984 resultados para Conductivity, electrical
Resumo:
Objectif : Etudier les résultats cliniques du traitement de patients atteints pai- une épilepsie mésiale du lobe temporal (MTLE) réfractaire, par stimulation cérébrale profonde (DBS) de l'hippocampe, en fonction de l'emplacement de l'électrode. Méthodes : Huit patients atteints de MTLE implantés dans l'hippocampe et stimulés par DBS à haute fréquence ont été inclus dans cette étude. Cinq ont subi des enregistrements invasifs avec des électrodes profondes dans le but d'estimer la localisation du foyer ictal avant de procéder à une DBS chronique. La position des contacts actifs de l'électrode a été mesurée en utilisant une imagerie post-opératoire. Les distances par rapport au foyer ictal ont été calculées, et les structures hippocampiques influencées par la stimulation ont été identifiées au moyen d'un atlas neuro-anatomique. Ces deux paramètres ont été corrélés avec la réduction de la fréquence d'apparition des crises. Résultats : Les distances entre la localisation estimée des contacts actifs de l'électrode et le foyer ictal étaient respectivement 11.0 +/- 4.3 ou 9.1 +/- 2.3 mm pour les patients présentant une réduction de > 50% ou < 50% de la fréquence des crises. Chez les patients (N = 6) montrant une réduction de > 50% de la fréquence des crises, 100% avaient des contacts actifs situés à < 3 mm du subiculum (p < 0,05). Les 2 patients ne répondant pas au traitement étaient stimulés par des contacts situés à > 3mm du subiculum. Conclusion : La diminution de l'activité épileptogène induite par DBS sur l'hippocampe dans les cas de MTLE réfractaires : 1) ne semble pas directement liée à la proximité des contacts actifs de l'électrode au foyer ictal déterminé par les enregistrements invasifs ; 2) pourrait être obtenue par une neuro-modulation du subiculum.
Resumo:
INTRODUCTION: We tested the hypothesis that twitch potentiation would be greater following conventional (CONV) neuromuscular electrical stimulation (50-µs pulse width and 25-Hz frequency) compared with wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (1-ms, 100-Hz) and voluntary (VOL) contractions, because of specificities in motor unit recruitment (random in CONV vs. random and orderly in WPHF vs. orderly in VOL). METHODS: A single twitch was evoked by means of tibial nerve stimulation before and 2 s after CONV, WPHF, and VOL conditioning contractions of the plantar flexors (intensity: 10% maximal voluntary contraction; duration: 10 s) in 13 young healthy subjects. RESULTS: Peak twitch increased (P<0.05) after CONV (+4.5±4.0%) and WPHF (+3.3±5.9%), with no difference between the 2 modalities, whereas no changes were observed after VOL (+0.8±2.6%). CONCLUSIONS: Our results demonstrate that presumed differences in motor unit recruitment between WPHF and CONV do not seem to influence twitch potentiation results.
Resumo:
PURPOSE: Neuromuscular electrical stimulation (NMES) with large electrodes and multiple current pathways (m-NMES) has recently been proposed as a valid alternative to conventional NMES (c-NMES) for quadriceps muscle (re)training. The main aim of this study was to compare discomfort, evoked force and fatigue between m-NMES and c-NMES of the quadriceps femoris muscle in healthy subjects. METHODS: Ten healthy subjects completed two experimental sessions (c-NMES and m-NMES), that were randomly presented in a cross-over design. Maximal electrically evoked force at pain threshold, self-reported discomfort at different levels of evoked force, and fatigue-induced force declines during and following a series of 20 NMES contractions were compared between c-NMES and m-NMES. RESULTS: m-NMES resulted in greater evoked force (P < 0.05) and lower discomfort in comparison to c-NMES (P < 0.05-0.001), but fatigue time course and magnitude did not differ between the two conditions. CONCLUSIONS: The use of quadriceps m-NMES appears legitimate for (re)training purposes because it generated stronger contractions and was less discomfortable than c-NMES (due to multiple current pathways and/or lower current density with larger electrodes).
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.
Resumo:
Background: Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. Methods: M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. Findings: M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. Discussion: This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient.
Resumo:
ABSTRACT (FRENCH)Ce travail de thèse basé sur le système visuel chez les sujets sains et chez les patients schizophrènes, s'articule autour de trois articles scientifiques publiés ou en cours de publication. Ces articles traitent des sujets suivants : le premier article présente une nouvelle méthode de traitement des composantes physiques des stimuli (luminance et fréquence spatiale). Le second article montre, à l'aide d'analyses de données EEG, un déficit de la voie magnocellulaire dans le traitement visuel des illusions chez les patients schizophrènes. Ceci est démontré par l'absence de modulation de la composante PI chez les patients schizophrènes contrairement aux sujets sains. Cette absence est induite par des stimuli de type illusion Kanizsa de différentes excentricités. Finalement, le troisième article, également à l'aide de méthodes de neuroimagerie électrique (EEG), montre que le traitement des contours illusoires se trouve dans le complexe latéro-occipital (LOC), à l'aide d'illusion « misaligned gratings ». De plus il révèle que les activités démontrées précédemment dans les aires visuelles primaires sont dues à des inférences « top- down ».Afin de permettre la compréhension de ces trois articles, l'introduction de ce manuscrit présente les concepts essentiels. De plus des méthodes d'analyses de temps-fréquence sont présentées. L'introduction est divisée en quatre parties : la première présente le système visuel depuis les cellules retino-corticales aux deux voix du traitement de l'information en passant par les régions composant le système visuel. La deuxième partie présente la schizophrénie par son diagnostic, ces déficits de bas niveau de traitement des stimuli visuel et ces déficits cognitifs. La troisième partie présente le traitement des contours illusoires et les trois modèles utilisés dans le dernier article. Finalement, les méthodes de traitement des données EEG seront explicitées, y compris les méthodes de temps-fréquences.Les résultats des trois articles sont présentés dans le chapitre éponyme (du même nom). De plus ce chapitre comprendra les résultats obtenus à l'aide des méthodes de temps-fréquenceFinalement, la discussion sera orientée selon trois axes : les méthodes de temps-fréquence ainsi qu'une proposition de traitement de ces données par une méthode statistique indépendante de la référence. La discussion du premier article en montrera la qualité du traitement de ces stimuli. La discussion des deux articles neurophysiologiques, proposera de nouvelles d'expériences afin d'affiner les résultats actuels sur les déficits des schizophrènes. Ceci pourrait permettre d'établir un marqueur biologique fiable de la schizophrénie.ABSTRACT (ENGLISH)This thesis focuses on the visual system in healthy subjects and schizophrenic patients. To address this research, advanced methods of analysis of electroencephalographic (EEG) data were used and developed. This manuscript is comprised of three scientific articles. The first article showed a novel method to control the physical features of visual stimuli (luminance and spatial frequencies). The second article showed, using electrical neuroimaging of EEG, a deficit in spatial processing associated with the dorsal pathway in chronic schizophrenic patients. This deficit was elicited by an absent modulation of the PI component in terms of response strength and topography as well as source estimations. This deficit was orthogonal to the preserved ability to process Kanizsa-type illusory contours. Finally, the third article resolved ongoing debates concerning the neural mechanism mediating illusory contour sensitivity by using electrical neuroimaging to show that the first differentiation of illusory contour presence vs. absence is localized within the lateral occipital complex. This effect was subsequent to modulations due to the orientation of misaligned grating stimuli. Collectively, these results support a model where effects in V1/V2 are mediated by "top-down" modulation from the LOC.To understand these three articles, the Introduction of this thesis presents the major concepts used in these articles. Additionally, a section is devoted to time-frequency analysis methods not presented in the articles themselves. The introduction is divided in four parts. The first part presents three aspects of the visual system: cellular, regional, and its functional interactions. The second part presents an overview of schizophrenia and its sensoiy-cognitive deficits. The third part presents an overview of illusory contour processing and the three models examined in the third article. Finally, advanced analysis methods for EEG are presented, including time- frequency methodology.The Introduction is followed by a synopsis of the main results in the articles as well as those obtained from the time-frequency analyses.Finally, the Discussion chapter is divided along three axes. The first axis discusses the time frequency analysis and proposes a novel statistical approach that is independent of the reference. The second axis contextualizes the first article and discusses the quality of the stimulus control and direction for further improvements. Finally, both neurophysiologic articles are contextualized by proposing future experiments and hypotheses that may serve to improve our understanding of schizophrenia on the one hand and visual functions more generally.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H-2 bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Cabo Verde é constituído por 10 ilhas, sendo a ilha do Maio a mais antiga do arquipélago, com uma área de 269 km2, tendo como comprimento máximo 24100 m, uma largura máxima de 16300 m e uma população total de 6740 habitantes. No que concerne à geomorfologia e geologia, a ilha é considerada plana e é composta por formações eruptivas e sedimentares, sendo as formações sedimentares dominantes na ilha. Apresenta as formações mais antigas de Cabo Verde, de idade jurássica e cretácica. No entanto, não apresenta as formações eruptivas mais recentes como as restantes ilhas. A ilha do Maio enquadra-se num clima do tipo árido e semiárido, com uma temperatura média de 24.5 ºC e uma precipitação anual de 125.4 mm. Estimativas efectuadas com base no modelo do balanço hídrico sequencial diário mostram que cerca de 7% da precipitação corresponde a escoamento superficial e 14.1% a escoamento subterrâneo. Pela aplicação deste modelo e do método do balanço químico do ião cloreto, os recursos hídricos subterrâneos renováveis anualmente na ilha do Maio estão, em ano médio, compreendidos entre 3.44 x 106 m3 e 4.76 x 106 m3.por sua vez, o escoamento total é estimado em 7.8 x 106 m3 anuais, o que equivale a cerca de 21 400 m3/dia. O escoamento subterrâneo na ilha do Maio faz-se globalmente de um modo centrífugo a partir das elevações do maciço central. O gradiente hidráulico assume valores entre 0.05% e 2.9%, sendo que o valor mais baixo ocorre no sector norte da ilha, o que favorece o fenómeno de intrusão salina. Relativamente à qualidade da água, verifica-se que as amostras recolhidas correspondem a águas muito mineralizadas, com valores de condutividade eléctrica compreendidos entre 832 μS/cm e 7730 μS/cm. Por sua vez, os valores de TDS estão compreendidos entre 705.8 mg/L e 4210.4 mg/L. Nestas condições, as águas subterrâneas analisadas podem ser consideradas águas salobras. A fácies hidroquímica dominante é a cloretada sódica, sendo que grande parte das amostras pode ser considerada cloretada-bicarbonatada sódica. Admitindo que a amostragem efectuada tem significado estatístico, poderá dizer-se que, a nível físico-químico, cerca de 20% das águas subterrâneas são próprias para o consumo humano. No que respeita à utilização da água para rega, as águas analisadas apresentam baixo a alto perigo de alcalinização do solo e alto a muito alto perigo de salinização. Em síntese, pode concluir-se que, não obstante o carácter árido da ilha do Maio, a mesma apresenta um potencial de recursos hídricos não negligenciável, eventualmente suficiente para suprir as necessidades hídricas da população. No entanto, o estudo desenvolvido mostra a necessidade de implementar medidas susceptíveis de proporcionarem um aproveitamento sustentado dos recursos hídricos, no quadro da gestão integrada dos recursos hídricos da ilha do Maio.