838 resultados para Computer based training
Resumo:
This article describes methodology for training teachers in Maths, Physics, Astronomy and Professional subjects in basic and specific computer skills.
Resumo:
Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV). In particular, HRV causes changes in the QT intervals along the ECG waveforms. This work is aimed at analysing the influence of seven QT interval correction methods (based on population models) on the performance of ECG-fiducial-based identification systems. In addition, we have also considered the influence of training set size, classifier, classifier ensemble as well as the number of consecutive heartbeats in a majority voting scheme. The ECG signals used in this study were collected from thirty-nine subjects within the Physionet open access database. Public domain software was used for fiducial points detection. Results suggested that QT correction is indeed required to improve the performance. However, there is no clear choice among the seven explored approaches for QT correction (identification rate between 0.97 and 0.99). MultiLayer Perceptron and Support Vector Machine seemed to have better generalization capabilities, in terms of classification performance, with respect to Decision Tree-based classifiers. No such strong influence of the training-set size and the number of consecutive heartbeats has been observed on the majority voting scheme.
Resumo:
The present research offers the technique of the experimental estimation of the ergonomic parameters of the computer training programs, created on the basis of the method of theoretical images are submitted.
Resumo:
This paper examines the application of commercial and non-invasive electroencephalography (EEG)-based brain-computer (BCIs) interfaces with serious games. Two different EEG-based BCI devices were used to fully control the same serious game. The first device (NeuroSky MindSet) uses only a single dry electrode and requires no calibration. The second device (Emotiv EPOC) uses 14 wet sensors requiring additional training of a classifier. User testing was performed on both devices with sixty-two participants measuring the player experience as well as key aspects of serious games, primarily learnability, satisfaction, performance and effort. Recorded feedback indicates that the current state of BCIs can be used in the future as alternative game interfaces after familiarisation and in some cases calibration. Comparative analysis showed significant differences between the two devices. The first device provides more satisfaction to the players whereas the second device is more effective in terms of adaptation and interaction with the serious game.
Resumo:
An approach to building a CBIR-system for searching computer tomography images using the methods of wavelet-analysis is presented in this work. The index vectors are constructed on the basis of the local features of the image and on their positions. The purpose of the proposed system is to extract visually similar data from the individual personal records and from analogous analysis of other patients.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Computers have dramatically changed the way we live, conduct business, and deliver education. They have infiltrated the Bahamian public school system to the extent that many educators now feel the need for a national plan. The development of such a plan is a challenging undertaking, especially in developing countries where physical, financial, and human resources are scarce. This study assessed the situation with regard to computers within the Bahamian public school system, and provided recommended guidelines to the Bahamian government based on the results of a survey, the body of knowledge about trends in computer usage in schools, and the country's needs. ^ This was a descriptive study for which an extensive review of literature in areas of computer hardware, software, teacher training, research, curriculum, support services and local context variables was undertaken. One objective of the study was to establish what should or could be relative to the state-of-the-art in educational computing. A survey was conducted involving 201 teachers and 51 school administrators from 60 randomly selected Bahamian public schools. A random stratified cluster sampling technique was used. ^ This study used both quantitative and qualitative research methodologies. Quantitative methods were used to summarize the data about numbers and types of computers, categories of software available, peripheral equipment, and related topics through the use of forced-choice questions in a survey instrument. Results of these were displayed in tables and charts. Qualitative methods, data synthesis and content analysis, were used to analyze the non-numeric data obtained from open-ended questions on teachers' and school administrators' questionnaires, such as those regarding teachers' perceptions and attitudes about computers and their use in classrooms. Also, interpretative methodologies were used to analyze the qualitative results of several interviews conducted with senior public school system's officials. Content analysis was used to gather data from the literature on topics pertaining to the study. ^ Based on the literature review and the data gathered for this study a number of recommendations are presented. These recommendations may be used by the government of the Commonwealth of The Bahamas to establish policies with regard to the use of computers within the public school system. ^
Resumo:
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^
Resumo:
In his dialogue - Near Term Computer Management Strategy For Hospitality Managers and Computer System Vendors - by William O'Brien, Associate Professor, School of Hospitality Management at Florida International University, Associate Professor O’Brien initially states: “The computer revolution has only just begun. Rapid improvement in hardware will continue into the foreseeable future; over the last five years it has set the stage for more significant improvements in software technology still to come. John Naisbitt's information electronics economy¹ based on the creation and distribution of information has already arrived and as computer devices improve, hospitality managers will increasingly do at least a portion of their work with software tools.” At the time of this writing Assistant Professor O’Brien will have you know, contrary to what some people might think, the computer revolution is not over, it’s just beginning; it’s just an embryo. Computer technology will only continue to develop and expand, says O’Brien with citation. “A complacent few of us who feel “we have survived the computer revolution” will miss opportunities as a new wave of technology moves through the hospitality industry,” says ‘Professor O’Brien. “Both managers who buy technology and vendors who sell it can profit from strategy based on understanding the wave of technological innovation,” is his informed opinion. Property managers who embrace rather than eschew innovation, in this case computer technology, will benefit greatly from this new science in hospitality management, O’Brien says. “The manager who is not alert to or misunderstands the nature of this wave of innovation will be the constant victim of technology,” he advises. On the vendor side of the equation, O’Brien observes, “Computer-wise hospitality managers want systems which are easier and more profitable to operate. Some view their own industry as being somewhat behind the times… They plan to pay significantly less for better computer devices. Their high expectations are fed by vendor marketing efforts…” he says. O’Brien warns against taking a gamble on a risky computer system by falling victim to un-substantiated claims and pie-in-the-sky promises. He recommends affiliating with turn-key vendors who provide hardware, software, and training, or soliciting the help of large mainstream vendors such as IBM, NCR, or Apple. Many experts agree that the computer revolution has merely and genuinely morphed into the software revolution, informs O’Brien; “…recognizing that a computer is nothing but a box in which programs run.” Yes, some of the empirical data in this article is dated by now, but the core philosophy of advancing technology, and properties continually tapping current knowledge is sound.
Resumo:
Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^
Resumo:
Acknowledgements We acknowledge, with thanks the contributions, of the following people who co-designed Boot Camp: Angus JM Watson (Highland Surgical Research Unit, NHSH & UoS), Morag E Hogg (NHSH Raigmore Hospital) and Ailsa Armstrong (NHSH). We also thank Angus JM Watson and Morag E Hogg for helping with the preparation of the funding application which supported this work. Funding Our thanks to the Clinical Skills Managed Educational Network (CSMEN) of Scotland for funding this research.
Resumo:
Attention-deficit hyperactivity disorder (ADHD) is the most prevalent and impairing neurodevelopmental disorder, with worldwide estimates of 5.29%. ADHD is clinically characterized by hyperactivity-impulsivity and inattention, with neuropsychological deficits in executive functions, attention, working memory and inhibition. These cognitive processes rely on prefrontal cortex function; cognitive training programs enhance performance of ADHD participants supporting the idea of neuronal plasticity. Here we propose the development of an on-line puzzle game based assessment and training tool in which participants must deduce the ‘winning symbol’ out of N distracters. To increase ecological validity of assessments strategically triggered Twitter/Facebook notifications will challenge the ability to ignore distracters. In the UK, significant cost for the disorder on health, social and education services, stand at £23m a year. Thus the potential impact of neuropsychological assessment and training to improve our understanding of the pathophysiology of ADHD, and hence our treatment interventions and patient outcomes, cannot be overstated.
Resumo:
The past years have witnessed an increased use of applied games for developing and evaluating communication skills. These skills benefit from in-terpersonal interactions. Providing feedback to students practicing communica-tion skills is difficult in a traditional class setting with one teacher and many students. This logistic challenge may be partly overcome by providing training using a simulation in which a student practices with communication scenarios. A scenario is a description of a series of interactions, where at each step the player is faced with a choice. We have developed a scenario editor that enables teachers to develop scenarios for practicing communication skills. A teacher can develop a scenario without knowledge of the implementation. This paper presents the implementation architecture for such a scenario-based simulation.
Resumo:
BACKGROUND AND PURPOSE: To assess the impact of a standardized delineation protocol and training interventions on PET/CT-based target volume delineation (TVD) in NSCLC in a multicenter setting.
MATERIAL AND METHODS: Over a one-year period, 11 pairs, comprised each of a radiation oncologist and nuclear medicine physician with limited experience in PET/CT-based TVD for NSCLC from nine different countries took part in a training program through an International Atomic Energy Agency (IAEA) study (NCT02247713). Teams delineated gross tumor volume of the primary tumor, during and after training interventions, according to a provided delineation protocol. In-house developed software recorded the performed delineations, to allow visual inspection of strategies and to assess delineation accuracy.
RESULTS: Following the first training, overall concordance indices for 3 repetitive cases increased from 0.57±0.07 to 0.66±0.07. The overall mean surface distance between observer and expert contours decreased from -0.40±0.03 cm to -0.01±0.33 cm. After further training overall concordance indices for another 3 repetitive cases further increased from 0.64±0.06 to 0.80±0.05 (p=0.01). Mean surface distances decreased from -0.34±0.16 cm to -0.05±0.20 cm (p=0.01).
CONCLUSION: Multiple training interventions improve PET/CT-based TVD delineation accuracy in NSCLC and reduces interobserver variation.