946 resultados para Compressive Stresses.
Resumo:
All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.
Resumo:
Clayish earth-based mortars can be considered eco-efficient products for indoor plastering since they can contribute to improve important aspects of building performance and sustainability. Apart from being products with low embodied energy when compared to other types of mortars used for interior plastering, mainly due to the use raw clay as natural binder, earth-based plasters may give a significant contribution for health and comfort of inhabitants. Due to high hygroscopicity of clay minerals, earth-based mortars present a high adsorption and desorption capacity, particularly when compared to other type of mortars for interior plastering. This capacity allows earth-based plasters to act as a moisture buffer, balancing the relative humidity of the indoor environment and, simultaneously, acting as a passive removal material, improving air quality. Therefore, earth-based plasters may also passively promote the energy efficiency of buildings, since they may contribute to decreasing the needs of mechanical ventilation and air conditioning. This study is part of an ongoing research regarding earth-based plasters and focuses on mortars specifically formulated with soils extracted from Portuguese ‘Barrocal’ region, in Algarve sedimentary basin. This region presents high potential for interior plastering due to regional geomorphology, that promote the occurrence of illitic soils characterized by a high adsorption capacity and low expansibility. More specifically, this study aims to assess how clayish earth and sand ratio of mortars formulation can influence the physical and mechanical properties of plasters. For this assessment four mortars were formulated with different volumetric proportions of clayish earth and siliceous sand. The results from the physical and mechanical characterization confirmed the significantly low linear shrinkage of all the four mortars, as well as their extraordinary adsorption-desorption capacity. These results presented a positive correlation with mortars´ clayish earth content and are consistent with the mineralogical analysis, that confirmed illite as the prevalent clay mineral in the clayish earth used for this study. Regarding mechanical resistance, although the promising results of the adhesion test, the flexural and compressive strength results suggest that the mechanical resistance of these mortars should be slightly improved. Considering the present results the mortars mechanical resistance improvement may be achieved through the formulation of mortars with higher clayish earth content, or alternatively, through the addition of natural fibers to mortars formulation, very common in this type of mortars. Both those options will be investigated in future research.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
RESUMO - A frequente insuficiência de informação e até, eventualmente, a presença de elementos cientificamente pouco robustos (ou mesmo hipotéticos) no procedimento de obtenção dos resultados finais (scores) com os diversos métodos de avaliação do risco, julga-se determinar a obtenção de distintos resultados no mesmo posto de trabalho e que interessam analisar. O presente estudo foi efectuado numa empresa da indústria automóvel e pretendeu contribuir para a efectividade do processo de avaliação do risco destas lesões em meio industrial. Utilizaram-se como ponto de partida as classificações de risco em postos de trabalho onde a aplicação do método OCRA — base do projecto de norma Europeu prEN 1005-5 para a estimativa do risco de LMEMSLT (Lesões Musculoesqueléticas do Membro Superior Ligadas ao Trabalho) — identificou níveis de risco moderados e/ou elevados (score OCRA ≥ 16,5). Assim nos postos de trabalho (n = 71) registou-se em vídeo a actividade de trabalho. Analisaram-se os principais factores de risco (postura, força, repetitividade e exposição a vibrações) com uma amostragem de segundo em segundo e aplicaram-se dois métodos: 1) RULA (McAtamney; Corlett, 1993); 2) SI (Moore; Garg, 1995). Dos resultados globais da aplicação dos métodos identificam- se discrepâncias evidentes: o método SI classificou 41 postos de risco elevado e o método RULA classificou apenas 26 postos de risco. Destaque para as divergências entre os postos classificados de risco elevado como, por exemplo: de entre os 41 postos com scores de risco da aplicação do método SI apenas se encontram 12 postos classificados de risco pelo método RULA. Os resultados permitem evidenciar validades preditivas diversas para os factores de risco analisados: 1) situações de aplicação de força (SI = 0,80; RULA = 0,66); 2) presença de posturas extremas (SI = 0,68; RULA = 0,48); 3) repetitividade (SI = 0,35; RULA = 0,43). Conclui-se pela divergência de resultados dos métodos SI e RULA aplicados nos mesmos postos de trabalho que tal situação alerta para a pertinência da utilização de um filtro que permita a identificação dos factores de risco presentes em cada posto de trabalho e que, por consequência, oriente a selecção do método mais indicado ou ainda, em oposição, do método contra-indicado. Este trabalho, como um contributo para uma efectiva identificação e avaliação do risco de LMEMSLT, conduz, no limite, à necessidade de elaboração de uma «grelha» das «grelhas» e de informação mais precisa sobre os métodos e sua aplicação, permitindo, desse modo, uma mais efectiva gestão do risco destas lesões.
Resumo:
O arroz (Oryza sativa L.) constitui a principal fonte de alimento para mais de metade da população mundial. O frio tem um grande impacto no desenvolvimento da planta de arroz com efeitos negativos ao nível da produtividade e economia mundial. Os mecanismos epigenéticos associados a alterações estruturais da cromatina estão envolvidos nos mecanismos de resposta das plantas a stresses abióticos. O foco do presente trabalho consistiu na compreensão da influência de fatores epigenéticos, nomeadamente de modificações de histonas, na regulação transcricional de um gene específico (OsDREB1B) envolvido na resposta de arroz ao stress de frio. O estudo da regulação epigenética deste gene envolveu a utilização de plantas de arroz com mutações em enzimas epigenéticas e drogas remodeladoras da cromatina. Neste trabalho mostramos que o gene OsDREB1B é induzido pelo stress de frio (4 °C) em todas os genótipos de arroz analisados, no entanto, a indução do gene em resposta ao stress de frio é maior em Nipponbare que em Dongjin. Nos genótipos que apresentam epimutações, nomeadamente o knockout de osdrm2 (DMT706) e de oshac704 (HAC704), o gene OsDREB1B é mais expresso que no respetivo genótipo selvagem (Dongjin), sendo que a indução da expressão em resposta ao frio foi maior em DMT706 do que em HAC704. A análise do padrão de marcas histónicas ao longo do promotor de OsDREB1B, através da imunoprecipitação da cromatina (ChIP) com anticorpos específicos, revelou que, em resposta ao frio (4ºC), Dongjin apresenta uma menor predominância da marca H3K9ac na região de -519 a -355 pares de bases (antes do ATG), enquanto que Nipponbare possui maior presença de H4K5ac na região de -280 a -121 pares de bases, sugerindo que a regulação epigenética de OsDREB1B seja influenciada pelo genótipo. No caso dos epi-mutantes (HAC704 e DMT706) registou-se um empobrecimento das marcas histónicas testadas sugerindo que a indução da expressão do OsDREB1B em reposta ao stress provocado pelo frio não depende necessariamente da presença de OsDRM2 nem de OsHAC704. Uma visão integrada da paisagem epigenética e do transcriptoma, perspetiva uma melhor compreensão dos mecanismos envolvidos na resposta da planta a condições ambientais adversas, abrindo novas linhas de trabalho no sentido de obter plantas mais tolerantes a fatores de stress.
Resumo:
The work reported in this thesis addresses the research question of when and how positive psychological states impact positive behavior and positive organizational development. We present two theoretical essays and three empirical studies to find possible answers to this question and we use a multitude of methodologies with different epistemological assumptions, including quantitative correlation analysis, social network analysis and qualitative grounded theory analysis. In the whole, our work shows that positive psychological states are fundamental to promote individual and organizational higher-levels of performance and well-being. It also points that the capability to induce positive psychological states in others (an “alter-positive” approach) is a powerful way to develop outstanding individuals and organizations. In a broader sense, it stresses the need to promote good vibrations as a fundamental route to create a better world.
Resumo:
A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC) as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU). Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC) were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
Programa Doutoral em Engenharia Têxtil.
Resumo:
The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.