988 resultados para Composite resins
Resumo:
Accelerated ageing studies for three composite propellant formulations, namely polystyrene (PS)/ ammonium perchlorate (AP), polymethylmethacrylate (PMMA)/AP and poly phenol formaldehyde (PPF)/AP have been carried out in the temperature range of 55-125°C. Measurements of the ultimate compression strength (Uc) and isothermal decomposition rate (TD rate) were monitored as a function of storage time and temperature. The change in Uc was found to be linearly dependent on the change in TD rate irrespective of the propellant systems. Analysis of the results further revealed that the cause of ageing for both Uc and burning rate (r) is the thermal decomposition of the propellant. The safe-life for the change in mechanical properties was found to be higher compared to the change in r for PS and PMMA based propellants.
Resumo:
In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.
Resumo:
A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
Instability of laminated curved composite beams made of repeated sublaminate construction is studied using finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate which has a smaller number of plies. This paper deals with the determination of optimum lay-up for buckling by ranking of such composite curved beams (which may be solid or sandwich). For this purpose, use is made of a two-noded, 16 degress of freedom curved composite beam finite element. The displacements u, v, w of the element reference axis are expressed in terms of one-dimensional first-order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains, occurring in beams subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. The computer program developed has been used, after extensive checking for correctness, to obtain optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for typical curved solid/sandwich composite beams.
Resumo:
This paper deals with the two-dimensional electric field modelling and electric field stress calculations of different types of composite insulators used in high voltage distribution and transmission systems. The computer simulations are carried out by using a commercially available software package. The potential and electric filed results obtained for the actual insulator profiles for three types of composite/polymeric insulators are discussed and presented.
Resumo:
Surface elastic strain field generated in conical indentation of sintered alumina clay composite was measured to verify the suitability of a superposed combination of Boussinesq and blister stress fields, used previously for analysing the indentation problem. The residual strain measured in the elastic hinterland is used to estimate the blister field strength without any reference to stress relation within that field. The approach may be useful in fracture studies of brittle materials.
Resumo:
Microporous polybenzimidazole (PBI) of 250–500 μm bead size has been epoxidized and subsequently reacted with l-cysteine in the presence of a phase-transfer catalyst at room temperature to obtain a sorbent having anchored l-cysteine, EPBI(Cyst). The sorption of Cu(II), Ni(II), Co(II), and Zn(II) in mildly acidic and ammoniacal solutions has been measured under comparable conditions on EPBI(Cyst) and Dowex 50W-X8(H+) resins. While the latter shows no appreciable difference in sorption of the four metals in acidic and ammoniacal media and has 40–60 % selectivity for copper(II) over the other three, EPBI(Cyst) shows a threefold increase in copper sorption and more than 90% copper selectivity over the other metals in ammoniacal media, compared to mildly acidic media. The copper binding constant and saturation capacity of EPBI(Cyst) in ammoniacal media decrease only slowly beyond pH 11.6 with the result that the resin shows significant sorption of Cu(II) even in strongly ammoniacal solutions. The sorbed copper is stripped with HCl relatively easily. The copper sorption kinetics on EPBI(Cyst) is unusually fast in ammoniacal media with more than 90 % of equilibrium sorption being attained in one minute.
Resumo:
In this paper we describe a method for the optimum design of fiber rein forced composite laminates for strength by ranking. The software developed based on this method is capable of designing laminates for strength; which are subjected to inplane and/or bending loads and optionally hygrothermal loads. Symmetric laminates only are considered which are assumed to be made of repeated sublaminate construction. Various layup schemes are evaluated based on the laminated plate theory and quadratic failure cri terion for the given mechanical and hygrothermal loads. The optimum layup sequence in the sublaminate and the number of such sublaminates required are obtained. Further, a ply-drop round-off scheme is adopted to arrive at an optimum laminate thickness. As an example, a family of 0/90/45/ -45 bi-directional lamination schemes are examined for dif ferent types of loads and the gains in optimising the ply orientations in a sublaminate are demonstrated.
Resumo:
Novel epoxy resins of various thiocarbonohydrazones have been synthesized by reacting the aldehyde or ketone derivatives of thiocarbohydrazide with excess of epichlorohydrin. The resins have been characterized by elemental analyses, epoxy equivalents, 1H-NMR and IR spectra, thermal analyses, and viscosity measurements. Curing of the resins has been carried out by mixing with thiocarbohydrazide or ethylenediamine and heating at 80°C for 48 h. A comparison of the thermal stability of the cured resin samples has been made.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Polystyrene/multiwall carbon nanotube composite films are prepared with loading up to 7 weight percent (wt%) of multiwall carbon nanotubes by solution processing and casting technique. In the formation of these composite films, iron filled carbon nanotubes with high aspect ratio (similar to 4000) were used. Scanning electron microscopy study shows that the nanotubes are uniformly dispersed within the polymer matrix. At high magnification, bending of carbon nanotubes is noticed which can be attributed to their elastic properties. The electrical conductivity measurements show that the percolation threshold is rather low at 0.21 wt%. Hysteresis loop measurements on the bulk multiwall carbon nanotube and composite samples are done at 10, 150 and 300 K and the coercivity values are found to be largest at all the temperatures, for 1 wt% composite sample. (C) 2010 Elsevier B.V. All rights reserved.