905 resultados para Complex combinatorial problem
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.
Resumo:
Intermediaries have introduced electronic services with varying success. One of the problems an intermediary faces is deciding what kind of exchange service it should offer to its customers and suppliers. For example, should it only provide a catalogue or should it also enable customers to order products? Developing the right exchange design is a complex undertaking because of the many design options on the one hand and the interests of multiple actors to be considered on the other. This is far more difficult than simple prescriptions like ‘creating a win-win situation’ suggest. We address this problem by developing design patterns for the exchanges between customers, intermediary, and suppliers related to role, linkage, transparency, and ovelty choices. For developing these design patterns, we studied four distinct electronic intermediaries and dentified exchange design choices that require trade-offs relating to the interests of customers, intermediary, and suppliers. The exchange design patterns contribute to the development of design theory for electronic intermediaries by filling a gap between basic business models and detailed business process designs.
Resumo:
Almost all metapopulation modelling assumes that connectivity between patches is only a function of distance, and is therefore symmetric. However, connectivity will not depend only on the distance between the patches, as some paths are easy to traverse, while others are difficult. When colonising organisms interact with the heterogeneous landscape between patches, connectivity patterns will invariably be asymmetric. There have been few attempts to theoretically assess the effects of asymmetric connectivity patterns on the dynamics of metapopulations. In this paper, we use the framework of complex networks to investigate whether metapopulation dynamics can be determined by directly analysing the asymmetric connectivity patterns that link the patches. Our analyses focus on “patch occupancy” metapopulation models, which only consider whether a patch is occupied or not. We propose three easily calculated network metrics: the “asymmetry” and “average path strength” of the connectivity pattern, and the “centrality” of each patch. Together, these metrics can be used to predict the length of time a metapopulation is expected to persist, and the relative contribution of each patch to a metapopulation’s viability. Our results clearly demonstrate the negative effect that asymmetry has on metapopulation persistence. Complex network analyses represent a useful new tool for understanding the dynamics of species existing in fragmented landscapes, particularly those existing in large metapopulations.
Resumo:
Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.
Resumo:
In this paper we adopt a complex systems perspective to examine the perturbations caused by the introduction of the Research Quality Framework (RQF) at a research-intensive Australian university. This case is instructive as it 1) presents a Federal policy initiative that attempted to fundamentally alter the recognition and reward mechanism within a regulated funding environment, 2) analyses the strategies of an institution and its research groups as they sought to not only comply with the implementation of the RQF but to maximise their outcome,and 3) it reveals the ways that some actors used this perturbation to advance their own interests. In short, this case represents an instrumental study into the dynamics of how information systems, organisations, and individuals co-evolve in practice as they seek to navigate a complex problem scenario.
Resumo:
This paper investigates the field programmable gate array (FPGA) approach for multi-objective and multi-disciplinary design optimisation (MDO) problems. One class of optimisation method that has been well-studied and established for large and complex problems, such as those inherited in MDO, is multi-objective evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algorithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on FPGA application to multi-objective test problem suites has verified the designed implementation effectiveness. Results show that NSGA-II on FPGA is three orders of magnitude better than the PC based counterpart.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.
Resumo:
Objective: This paper describes the first phase of a larger project that utilizes participatory action research to examine complex mental health needs across an extensive group of stakeholders in the community. Method: Within an objective qualitative analysis of focus group discussions the social ecological model is utilized to explore how integrative activities can be informed, planned and implemented across multiple elements and levels of a system. Seventy-one primary care workers, managers, policy-makers, consumers and carers from across the southern metropolitan and Gippsland regions of Victoria, Australia took part in seven focus groups. All groups responded to an identical set of focusing questions. Results: Participants produced an explanatory model describing the service system, as it relates to people with complex needs, across the levels of social ecological analysis. Qualitative themes analysis identified four priority areas to be addressed in order to improve the system's capacity for working with complexity. These included: (i) system fragmentation; (ii) integrative case management practices; (iii) community attitudes; and (iv) money and resources. Conclusions: The emergent themes provide clues as to how complexity is constructed and interpreted across the system of involved agencies and interest groups. The implications these findings have for the development and evaluation of this community capacity-building project were examined from the perspective of constructing interventions that address both top-down and bottom-up processes.
Resumo:
How do humans respond to their social context? This question is becoming increasingly urgent in a society where democracy requires that the citizens of a country help to decide upon its policy directions, and yet those citizens frequently have very little knowledge of the complex issues that these policies seek to address. Frequently, we find that humans make their decisions more with reference to their social setting, than to the arguments of scientists, academics, and policy makers. It is broadly anticipated that the agent based modelling (ABM) of human behaviour will make it possible to treat such social effects, but we take the position here that a more sophisticated treatment of context will be required in many such models. While notions such as historical context (where the past history of an agent might affect its later actions) and situational context (where the agent will choose a different action in a different situation) abound in ABM scenarios, we will discuss a case of a potentially changing context, where social effects can have a strong influence upon the perceptions of a group of subjects. In particular, we shall discuss a recently reported case where a biased worm in an election debate led to significant distortions in the reports given by participants as to who won the debate (Davis et al 2011). Thus, participants in a different social context drew different conclusions about the perceived winner of the same debate, with associated significant differences among the two groups as to who they would vote for in the coming election. We extend this example to the problem of modelling the likely electoral responses of agents in the context of the climate change debate, and discuss the notion of interference between related questions that might be asked of an agent in a social simulation that was intended to simulate their likely responses. A modelling technology which could account for such strong social contextual effects would benefit regulatory bodies which need to navigate between multiple interests and concerns, and we shall present one viable avenue for constructing such a technology. A geometric approach will be presented, where the internal state of an agent is represented in a vector space, and their social context is naturally modelled as a set of basis states that are chosen with reference to the problem space.
Resumo:
Web service technology is increasingly being used to build various e-Applications, in domains such as e-Business and e-Science. Characteristic benefits of web service technology are its inter-operability, decoupling and just-in-time integration. Using web service technology, an e-Application can be implemented by web service composition — by composing existing individual web services in accordance with the business process of the application. This means the application is provided to customers in the form of a value-added composite web service. An important and challenging issue of web service composition, is how to meet Quality-of-Service (QoS) requirements. This includes customer focused elements such as response time, price, throughput and reliability as well as how to best provide QoS results for the composites. This in turn best fulfils customers’ expectations and achieves their satisfaction. Fulfilling these QoS requirements or addressing the QoS-aware web service composition problem is the focus of this project. From a computational point of view, QoS-aware web service composition can be transformed into diverse optimisation problems. These problems are characterised as complex, large-scale, highly constrained and multi-objective problems. We therefore use genetic algorithms (GAs) to address QoS-based service composition problems. More precisely, this study addresses three important subproblems of QoS-aware web service composition; QoS-based web service selection for a composite web service accommodating constraints on inter-service dependence and conflict, QoS-based resource allocation and scheduling for multiple composite services on hybrid clouds, and performance-driven composite service partitioning for decentralised execution. Based on operations research theory, we model the three problems as a constrained optimisation problem, a resource allocation and scheduling problem, and a graph partitioning problem, respectively. Then, we present novel GAs to address these problems. We also conduct experiments to evaluate the performance of the new GAs. Finally, verification experiments are performed to show the correctness of the GAs. The major outcomes from the first problem are three novel GAs: a penaltybased GA, a min-conflict hill-climbing repairing GA, and a hybrid GA. These GAs adopt different constraint handling strategies to handle constraints on interservice dependence and conflict. This is an important factor that has been largely ignored by existing algorithms that might lead to the generation of infeasible composite services. Experimental results demonstrate the effectiveness of our GAs for handling the QoS-based web service selection problem with constraints on inter-service dependence and conflict, as well as their better scalability than the existing integer programming-based method for large scale web service selection problems. The major outcomes from the second problem has resulted in two GAs; a random-key GA and a cooperative coevolutionary GA (CCGA). Experiments demonstrate the good scalability of the two algorithms. In particular, the CCGA scales well as the number of composite services involved in a problem increases, while no other algorithms demonstrate this ability. The findings from the third problem result in a novel GA for composite service partitioning for decentralised execution. Compared with existing heuristic algorithms, the new GA is more suitable for a large-scale composite web service program partitioning problems. In addition, the GA outperforms existing heuristic algorithms, generating a better deployment topology for a composite web service for decentralised execution. These effective and scalable GAs can be integrated into QoS-based management tools to facilitate the delivery of feasible, reliable and high quality composite web services.
Resumo:
Mismanagement of large-scale, complex projects has resulted in spectacular failures, cost overruns, time blowouts, and stakeholder dissatisfaction. We focus discussion on the interaction of key management and leadership attributes which facilitate leaders’ adaptive behaviors. These behaviors should in turn influence adaptive team member behavior, stakeholder engagement and successful project outcomes, outputs and impacts. An understanding of this type of management will benefit from a perspective based in managerial and organizational cognition. The research question we explore is whether successful leaders of large-scale complex projects have an internal process leading to a display of administrative, adaptive, and enabling behaviors that foster adaptive processes and enabling behaviors within their teams and with external stakeholders. At the core of the model we propose interactions of key attributes, namely cognitive flexibility, affect, and emotional intelligence. The result of these cognitive-affective attribute interactions is leadership leading to enhanced likelihood of complex project success.
Resumo:
AIMS This paper reports on the implementation of a research project that trials an educational strategy implemented over six months of an undergraduate third year nursing curriculum. This project aims to explore the effectiveness of ‘think aloud’ as a strategy for learning clinical reasoning for students in simulated clinical settings. BACKGROUND Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting [1]. Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. For students learning to manage complex clinical situations, teaching approaches are required that make these instinctive cognitive processes explicit and clear [2-5]. In line with professional expectations, nursing students in third year at Queensland University of Technology (QUT) are expected to display clinical reasoning skills in practice. This can be a complex proposition for students in practice situations, particularly as the degree of uncertainty or decision complexity increases [6-7]. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students [4, 8]. This project aims to use the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students are assisted to uncover cognitive approaches that best assist them to make effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection on their practice. MEHODS In semester 2 2011 at QUT, third year nursing students will undertake high fidelity simulation, some for the first time commencing in September of 2011. There will be two cohorts for strategy implementation (group 1= use think aloud as a strategy within the simulation, group 2= not given a specific strategy outside of nursing assessment frameworks) in relation to problem solving patient needs. Students will be briefed about the scenario, given a nursing handover, placed into a simulation group and an observer group, and the facilitator/teacher will run the simulation from a control room, and not have contact (as a ‘teacher’) with students during the simulation. Then debriefing will occur as a whole group outside of the simulation room where the session can be reviewed on screen. The think aloud strategy will be described to students in their pre-simulation briefing and allow for clarification of this strategy at this time. All other aspects of the simulations remain the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). RESULTS Methodology of the project and the challenges of implementation will be the focus of this presentation. This will include ethical considerations in designing the project, recruitment of students and implementation of a voluntary research project within a busy educational curriculum which in third year targets 669 students over two campuses. CONCLUSIONS In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs. References 1. Lasater, K., High-fidelity simulation and the development of clinical judgement: students' experiences. Journal of Nursing Education, 2007. 46(6): p. 269-276. 2. Lapkin, S., et al., Effectiveness of patient simulation manikins in teaching clinical reasoning skills to undergraduate nursing students: a systematic review. Clinical Simulation in Nursing, 2010. 6(6): p. e207-22. 3. Kaddoura, M.P.C.M.S.N.R.N., New Graduate Nurses' Perceptions of the Effects of Clinical Simulation on Their Critical Thinking, Learning, and Confidence. The Journal of Continuing Education in Nursing, 2010. 41(11): p. 506. 4. Banning, M., The think aloud approach as an educational tool to develop and assess clinical reasoning in undergraduate students. Nurse Education Today, 2008. 28: p. 8-14. 5. Porter-O'Grady, T., Profound change:21st century nursing. Nursing Outlook, 2001. 49(4): p. 182-186. 6. Andersson, A.K., M. Omberg, and M. Svedlund, Triage in the emergency department-a qualitative study of the factors which nurses consider when making decisions. Nursing in Critical Care, 2006. 11(3): p. 136-145. 7. O'Neill, E.S., N.M. Dluhy, and C. Chin, Modelling novice clinical reasoning for a computerized decision support system. Journal of Advanced Nursing, 2005. 49(1): p. 68-77. 8. Lee, J.E. and N. Ryan-Wenger, The "Think Aloud" seminar for teaching clinical reasoning: a case study of a child with pharyngitis. J Pediatr Health Care, 1997. 11(3): p. 101-10.
Resumo:
Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations.