960 resultados para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, length-frequency data on Spanish sardine (Sardinella aurita) from northeastern Venezuela were analyzed for the period 1967-1989. Average growth parameters for the von Bertalanffy equation were established as L sub( infinity )= 26.6 cm (TL) and K = 1.26 year super(-1). The number of recruits to the fishing area, estimated from length-structured Virtual Population Analysis, varied from <10 super(8) in the late 1960s to >10 super(9) at the end of the 1980s. Exploited biomass estimates for the same period varied from less than 20,000 t in the first year to more than 100,000 in 1989. Both recruitment and exploited biomass showed different seasonal patterns between 1976-1983 and 1984-1988. Despite some uncertainty regarding these estimates, it is considered that major population tendencies are adequately represented by this analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent development of the pop-up satellite archival tag (PSAT) has allowed the collection of information on a tagged animal, such as geolocation, pressure (depth), and ambient water temperature. The success of early studies, where PSATs were used on pelagic fishes, has spurred increasing interest in the use of these tags on a large variety of species and age groups. However, some species and age groups may not be suitable candidates for carrying a PSAT because of the relatively large size of the tag and the consequent energy cost to the study animal. We examined potential energetic costs to carrying a tag for the cownose ray (Rhinoptera bonasus). Two forces act on an animal tagged with a PSAT: lift from the PSATs buoyancy and drag as the tag is moved through the water column. In a freshwater flume, a spring scale measured the total force exerted by a PSAT at flume velocities from 0.00 to 0.60 m/s. By measuring the angle of deflection of the PSAT at each velocity, we separated total force into its constituent forces — lift and drag. The power required to carry a PSAT horizontally through the water was then calculated from the drag force and velocity. Using published metabolic rates, we calculated the power for a ray of a given size to swim at a specified velocity (i.e., its swimming power). For each velocity, the power required to carry a PSAT was compared to the swimming power expressed as a percentage, %TAX (Tag Altered eXertion). A %TAX greater than 5% was felt to be energetically significant. Our analysis indicated that a ray larger than 14.8 kg can carry a PSAT without exceeding this criterion. This method of estimating swimming power can be applied to other species and would allow a researcher to decide the suitability of a given study animal for tagging with a PSAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we estimate nominal and standardized shrimping effort in the Gulf of Mexico for the years 1965 through 1993. We accomplish this by first developing a standardization method (model) and then an expansion method (model). The expansion model estimates nominal days fished for noninterview landings data. The standardization model converts nominal days fished to standard days fished. We then characterize the historical trends of the penaeid shrimp fishery byvessel configuration, relative fishing power, and nominal and standardized effort. Wherever possible, we provide comparison with previous estimates by the National Marine Fisheries Service, NOAA.