995 resultados para Combined Ion-microprobe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the efficiency of sulfate green rust (GR2) to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II) and Fe(III) sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II), Fe(II) and Fe(III) sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II) sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD) characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples. XRD was repeated after 45 days. The results showed that Nious GR2 prepared by coprecipitation is isomorphous to Ni-free GR2, i.e. Ni is incorporated into the crystalline structure. Fe(II) was not replaced by Ni(II) in the crystalline structure of GR2 formed prior to exposure to solution-phase Ni. This suggests Ni was adsorbed to the GR2 surface. Sulfate green rust is more efficient in removing Ni from the environment by coprecipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined report on the institutions under the control of the Iowa Department of Human Services for the five years ended June 30, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined report on the institutions under the control of the Iowa Department of Corrections for the five years ended June 30, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined report on the eight Judicial District Departments of Correctional Services for the year ended June 30, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:To identify the gene causing rod-cone dystrophy/amelogenesis imperfecta Methods:Homozygosity mapping was performed using the Affymetrix 50K XbaI array in one family and candidate genes in the linked interval were sequenced with ABI Dye Terminator, vers. 1 in the index patient of 3 families. The identified mutations were screened in normal control individuals. Expression analyses were performed on RNA extracted from the brain, various parts of the eye and teeth; immunostaining was done on mouse eyes and jaw and knock-down experiments were carried out in zebrafish embroys. Results:Sequencing the coding regions of ancient conserved domain protein 4 (CNNM4), a metal ions transporter, revealed a 1-base pair duplication (p.L438fs) in family A, a p.R236Q mutation in family B and a p.L324P in family C. All these mutations were homozygous and involved very conserved amino acids in paralogs and orthologs. Immunostaining and RT-PCR confirmed that CNNM4 was strongly expressed in various parts of the eye and in the teeth. Morpholino experiments in zebrafish showed a loss of ganglion cells at 5 days post fertilization. Conclusions:The rod-cone dystrophy/amelogenesis imperfecta syndrome is caused by mutation in CNNM4 and is due to aberrant metal ion homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental method of studying shifts between concentration-versus-depth profiles of vacancy- and interstitial-type defects in ion-implanted silicon is demonstrated. The concept is based on deep level transient spectroscopy measurements utilizing the filling pulse variation technique. The vacancy profile, represented by the vacancy¿oxygen center, and the interstitial profile, represented by the interstitial carbon¿substitutional carbon pair, are obtained at the same sample temperature by varying the duration of the filling pulse. The effect of the capture in the Debye tail has been extensively studied and taken into account. Thus, the two profiles can be recorded with a high relative depth resolution. Using low doses, point defects have been introduced in lightly doped float zone n-type silicon by implantation with 6.8 MeV boron ions and 680 keV and 1.3 MeV protons at room temperature. The effect of the angle of ion incidence has also been investigated. For all implantation conditions the peak of the interstitial profile is displaced towards larger depths compared to that of the vacancy profile. The amplitude of this displacement increases as the width of the initial point defect distribution increases. This behavior is explained by a simple model where the preferential forward momentum of recoiling silicon atoms and the highly efficient direct recombination of primary point defects are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural and optical analysis of SiO2 layers emitting white luminescence is reported. These structures have been synthesized by sequential Si+ and C+ ion implantation and high-temperature annealing. Their white emission results from the presence of up to three bands in the photoluminescence (PL) spectra, covering the whole visible spectral range. The microstructural characterization reveals the presence of a complex multilayer structure: Si nanocrystals are only observed outside the main C-implanted peak region, with a lower density closer to the surface, being also smaller in size. This lack of uniformity in their density has been related to the inhibiting role of C in their growth dynamics. These nanocrystals are responsible for the band appearing in the red region of the PL spectrum. The analysis of the thermal evolution of the red PL band and its behavior after hydrogenation shows that carbon implantation also prevents the formation of well passivated Si/SiO2 interfaces. On the other hand, the PL bands appearing at higher energies show the existence of two different characteristics as a function of the implanted dose. For excess atomic concentrations below or equal to 10%, the spectra show a PL band in the blue region. At higher doses, two bands dominate the green¿blue spectral region. The evolution of these bands with the implanted dose and annealing time suggests that they are related to the formation of carbon-rich precipitates in the implanted region. Moreover, PL versus depth measurements provide a direct correlation of the green band with the carbon-implanted profile. These PL bands have been assigned to two distinct amorphous phases, with a composition close to elemental graphitic carbon or stoichiometric SiC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a detailed Raman scattering and microstructural characterization of S-rich CuIn(S,Se)2 absorbers produced by electrodeposition of nanocrystalline CuInSe2 precursors and subsequent reactive annealing under sulfurizing conditions. Surface and in-depth resolved Raman microprobe measurements have been correlated with the analysis of the layers by optical and scanning electron microscopy, x-ray diffraction, and in-depth Auger electron spectroscopy. This has allowed corroboration of the high crystalline quality of the sulfurized layers. The sulfurizing conditions used also lead to the formation of a relatively thick MoS2 intermediate layer between the absorber and the Mo back contact. The analysis of the absorbers has also allowed identification of the presence of In-rich secondary phases, which are likely related to the coexistence in the electrodeposited precursors of ordered vacancy compound domains with the main chalcopyrite phase, in spite of the Cu-rich conditions used in the growth. This points out the higher complexity of the electrodeposition and sulfurization processes in relation to those based in vacuum deposition techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.