809 resultados para Cobalt-chromium alloys
Resumo:
The effect of consecutive cyclic polarization in de-aerated 0.5 M NaOH solutions on the surface microstructure of mechanically polished Cu-Al-Ag alloys of different compositions and heat treatments has been studied using optical microscopy, SEM and EDS. The current peaks of the cyclic polarization curves do not depend on the alloy composition in the composition range studied. The repetitive potential scans between H2 and O2 evolution in alkaline media lead to preferential dissolution of aluminium, the roughness and phase composition of the surface of the alloys changing significantly. The quasistationary I-E curves of the different Cu-Al-Ag alloys studied consist in the superposition of the quasistationary I-E curves of high-purity Cu and Ag, the EDS microanalysis showing that aluminium is not present on the surface of the alloy in these conditions.
Resumo:
Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.
Resumo:
The kinetics of eutectoid decomposition beta(1)' --> gamma(2) + (alpha + gamma(2)) in Cu-12.86 wt% Al and Cu-12.84 wt% Al-1.98 wt% Ag alloys was studied by hardness measurements, using the Johnson-Mehl-Avrami equation. The results indicate that the presence of silver seems to influence the nucleation rate and the activation energy of the reaction.
Resumo:
The autoxidation of [Ni-II(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(II)tetraglycine, accelerated by S-IV is studied spectrophotometrically by following the formation of Ni-III complexes.
Resumo:
In this work, zirconium titanate doped with 0. 1, 0.2, and 0.4 mole% of tin, chromium and vanadium was synthesized by the polymeric precursors method and characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen adsorption and scanning electronic microscopy (SEM). The powder presented two mass losses attributed to the exit of water and to the pyrolysis of the organic material. The surface area reduction observed from 500 degrees C indicates the beginning of the sintering process. All the dopants led to changes in the lattice parameters and to the decrease of both crystallite size and particle size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Titanium(IV) oxide, coated on the surface of silica gel (surface area, 308 m2 g-1; amount of Ti(IV) per gram of modified silica gel, 1.8 x 10(-3) mol), was used to adsorb CrO4(2-) ions from acidic solutions. The exchange capacity increased at lower pH values and was affected to some extent by the acid used. The material was used to preconcentrate Cr(VI) from 0.5 ppm solutions of chromate very efficiently and virtually 100% recovery was achieved in every instance.
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
The effect of the bath pH on the electrodeposition of nanocrystalline Pd-Co alloys and on their magnetic properties was studied. The pH practically did not affect the alloy composition. Conversely, the pH showed a significant influence on the shape and size of crystallites. Two different crystallites morphology were observed depending on the bath pH. A crystallite size ranging from 18.2 to 30 nm was obtained from X-ray diffractometry (XRD) patterns using the Scherrer's method. Also from the XRD patterns the lattice strain percentage was calculated and correlated with the residual stress, which probably originated during the film electrodeposition on the substrate. Some alloy magnetic properties showed small variations. In contrast, high and unexpected coercivities were obtained reaching a maximum of 1.69 kOe at pH 5.5. The high coercivity values were attributed to the presence of residual stress at the film-substrate interface, which increased as the bath pH and crystallite size decrease, both of them contributing simultaneously to increase in coercivity. (C) 2006 Elsevier B.V. All rights reserved.