980 resultados para Climate variation
Resumo:
VAR methods have been used to model the inter-relationships between inflows and outfl ows into unemployment and vacancies using tools such as impulse response analysis. In order to investigate whether such impulse responses change over the course of the business cycle or or over time, this paper uses TVP-VARs for US and Canadian data. For the US, we find interesting differences between the most recent recession and earlier recessions and expansions. In particular, we find the immediate effect of a negative shock on both in ow and out flow hazards to be larger in 2008 than in earlier times. Furthermore, the effect of this shock takes longer to decay. For Canada, we fi nd less evidence of time-variation in impulse responses.
Resumo:
Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76) were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page). Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.
Resumo:
The standard approach to the economics of climate change, which has its best known implementation in Nordhaus's DICE and RICE models (well described in Nordhaus's 2008 book, A Question of Balance) is not well equipped to deal with the possibility of catastrophe, since we are unable to evaluate a risk averse representative agent's expected utility when there is any signi cant probability of zero consumption. Whilst other authors attempt to develop new tools with which to address these problems, the simple solution proposed in this paper is to ask a question that the currently available tools of climate change economics are capable of answering. Rather than having agents optimally choosing a path (that differs from the recommendations of climate scientists) within models which cannot capture the essential features of the problem, I argue that economic models should be used to determine the savings and investment paths which implement climate targets that have been suggested in the physical science literature.
Resumo:
Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.
Resumo:
Parasites can inflict indirect fitness costs to their hosts by eliciting costly immune responses. These costs depend on the type and amount of immunostimulants presented to the host immune system but also on the amount of resources available to fuel host immune responses. Here, we investigated how the relative costs of two different types of immune challenge are modulated by variation in food availability. We injected nestling tawny owls (Strix aluco) with either 10 mu g of phytohaemagglutinin (PHA) or 20 mu g of lipopolysaccharide (LPS), and subsequently raised them under two different food regimes (food-restricted vs. ad libitum). After controlling for food consumption, we found that LPS-injected nestlings lost more body mass than PHA-injected ones only when food-restricted. We also found that body mass gain of owlets fed ad libitum decreased with the intensity of the skin swelling response against LPS, but not PHA. These experimental and correlative results suggest that nestling tawny owls suffered greater immune costs when treated with LPS than PHA, and that variation in the costs of two different types of immune challenge can be exacerbated under conditions of low food availability. Our study highlights the importance of taking into consideration the interplay between host immunity and nutrition in the study of indirect costs of parasitism.
Resumo:
We investigate the causes of a conflict by adding ambient climate factors to the existing bundle of most significant variables. It turns out that – controlling for possible associations – temperature could actually induce a conflict. We emphasise that temperature could not be a dominant reason in starting a conflict; however, it could escalate the chances when other factors are present. This paper references some of the related psychological studies to support this claim. We also show that grievance factors could actually be rightfully effective in starting an internal conflict alongside greed based reasons. In the end, we believe that it could be informative to study ambient factors more often in economics.
Resumo:
Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.
Resumo:
Domestic action on climate change is increasingly important in the light of the difficulties with international agreements and requires a combination of solutions, in terms of institutions and policy instruments. One way of achieving government carbon policy goals may be the creation of an independent body to advise, set or monitor policy. This paper critically assesses the Committee on Climate Change (CCC), which was created in 2008 as an independent body to help move the UK towards a low carbon economy. We look at the motivation for its creation in terms of: information provision, advice, monitoring, or policy delegation. In particular we consider its ability to overcome a time inconsistency problem by comparing and contrasting it with another independent body, the Monetary Policy Committee of the Bank of England. In practice the Committee on Climate Change appears to be the ‘inverse’ of the Monetary Policy Committee, in that it advises on what the policy goal should be rather than being responsible for achieving it. The CCC incorporates both advisory and monitoring functions to inform government and achieve a credible carbon policy over a long time frame. This is a similar framework to that adopted by Stern (2006), but the CCC operates on a continuing basis. We therefore believe the CCC is best viewed as a "Rolling Stern plus" body. There are also concerns as to how binding the budgets actually are and how the budgets interact with other energy policy goals and instruments, such as Renewable Obligation Contracts and the EU Emissions Trading Scheme. The CCC could potentially be reformed to include: an explicit information provision role; consumption-based accounting of emissions and control of a policy instrument such as a balanced-budget carbon tax.
Resumo:
The possibility of low-probability extreme natural events has reignited the debate over the optimal intensity and timing of climate policy. In this paper, we contribute to the literature by assessing the implications of low-probability extreme events on environmental policy in a continuous-time real options model with “tail risk”. In a nutshell, our results indicate the importance of tail risk and call for foresighted pre-emptive climate policies.
Resumo:
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species' ability to adapt (and hence its long-term viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data with modelling of species distributions under climate change to document this situation in an endangered lizard (Eulamprus leuraensis) from montane southeastern Australia. The species is known from only about 40 isolated swamps. Genetic diversity of lizard populations is greater in some sites than others, presumably reflecting consistently high habitat suitability over evolutionary time. Species distribution modelling suggests that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic distribution.
Resumo:
En aquest projecte s’ha estudiat la relació entre els canvis en les temperatures superficials de l’Oceà Atlàntic i els canvis en la circulació atmosfèrica en el segle XX. Concretament s’han analitzat dos períodes de estudi: el primer des del 1940 al 1960 i el segon des del 1980 fins al 2000. S’ha posat especial interès en les anomalies en les temperatures superficials del mar en la regió tropical de l’Oceà Atlàntic i la possible interconnexió amb els canvis climàtics observats i predits. Per a la realització de l’estudi s’han dut a terme una sèrie d’experiments utilitzant el model climàtic elaborat a la universitat d’UCLA (UCLA‐AGCM model). Els resultats obtinguts han estat analitzats en forma de mapes i figures per a cada variable d’estudi. També s’ha fet una comparació entre els resultats obtinguts i altres trobats en altres treballs publicats sobre el mateix tema de recerca. Els resultats obtinguts són molt amplis i poden tenir diverses interpretacions. Tot i així algunes de les conclusions a les quals s’ha arribat són: les diferències més significatives per a les variables estudiades i trobades a partir dels resultats obtinguts del model per als dos períodes d’estudi són en els mesos d’hivern i a la zona dels tròpics; concretament a parts del nord de sud Amèrica i a parts del nord d’Àfrica. S’han trobat també canvis significatius en els patrons de precipitació sobre aquestes mateixes zones. També s’ha observant un moviment cap al nord de la zona d’interconvergència tropical i pot ser degut a l’anòmal gradient trobat a la zona equatorial en les temperatures superficial de l’Oceà. Tot i així per a una definitiva discussió i conclusions sobre els resultats dels experiments, seria necessari un estudi més ampli i profund.
Resumo:
We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.
Resumo:
The coloration of ectotherms plays an important role in thermoregulation processes. Dark individuals should heat up faster and be able to reach a higher body temperature than light individuals and should therefore have benefits in cool areas. In central Europe, montane local populations of adder (Vipera berus) and asp viper (Vipera aspis) exhibit a varying proportion of melanistic individuals. We tested whether the presence of melanistic V. aspis and V. berus could be explained by climatic conditions. We measured the climatic niche position and breadth of monomorphic (including strictly patterned individuals) and polymorphic local populations, calculated their niche overlap and tested for niche equivalency and similarity. In accordance with expectations, niche overlap between polymorphic local populations of both species is high, and even higher than that of polymorphic versus monomorphic montane local populations of V. aspis, suggesting a predominant role of melanism in determining the niche of ectothermic vertebrates. However, unexpectedly, the niche of polymorphic local populations of both species is narrower than that of monomorphic ones, indicating that colour polymorphism does not always enable the exploitation of a greater variability of resources, at least at the intraspecific level. Overall, our results suggest that melanism might be present only when the thermoregulatory benefit is higher than the cost of predation.
Resumo:
Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL) specific for epitopes within the circumsporozoite (CS) protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.
Resumo:
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradient is subject to the interplay of biotic interactions in complement to abiotic environmental filtering. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose to use food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve both species distribution and community forecasts. Most importantly, this combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may be recurrent. Our combined approach points a promising direction forward to model the spatial variation of entire species interaction networks. Our work has implications for studies of range shifting species and invasive species biology where it may be unknown how a given biota might interact with a potential invader or in future climate.