939 resultados para Chaotic diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of the gel-immobilized cell system requires accurate measurement of diffusion coefficients. Three methods of the quasi-steady-state (QSS) method, the time-lag (TL) method and a variant quasi-steady-state (VQSS) method were critically assessed and compared for the evaluation of diffusivities using the diffusion cell technique. Experimental data from our laboratory were used for the analysis of the influence of crucial theoretical assumptions not being fulfilled in each method. The results highlighted a risk in obtaining highly variable diffusion coefficients by not validating the QSS and the accuracy of the measurements. In the TL method, the estimation of diffusivities based on the plot intercept that was mostly used in the literature, results in a many fold lower value when compared to that based on the plot slope. The comparison with the QSS and VQSS methods confirmed similar diffusivity obtained by the TL method based on the plot slope. It thus suggested that the correct estimation of diffusivities by the TL method could be based on the plot slope only. Furthermore, the errors associated with the solute mass in the gel, the sample withdrawal and the non-negligible concentration changes in the chambers were also discussed. It is concluded that diffusion cell technique has to be employed cautiously for a correct evaluation of diffusivities. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying chaotic behavior in nonlinear systems requires numerous computations in order to simulate the behavior of such systems. The Standard Map Machine was designed and implemented as a special computer for performing these intensive computations with high-speed and high-precision. Its impressive performance is due to its simple architecture specialized to the numerical computations required of nonlinear systems. This report discusses the design and implementation of the Standard Map Machine and its use in the study of nonlinear mappings; in particular, the study of the standard map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kargl, Florian; Meyer, A.; Koza, M.M.; Schober, H., (2006) 'Formation of channels for fast-ion diffusion in alkali silicate melts: A quasielastic neutron scattering study', Physical Review B: Condensed Matter and Materials Physics 74 pp.14304 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kargl, Florian; Meyer, A., (2004) 'Inelastic neutron scattering on sodium aluminosilicate melts: sodium diffusion and intermediate range order', Chemical Geology 213(1-3) pp.165-172 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter, Rudolf; Heitjans, P., (2001) 'Li+ Diffusion and its Structural Basis in the Nanocrystalline and Amorphous Forms of Two-dimensionally Ion-conducting LixTiS2', Journal of Physical Chemistry B 105(26) pp.6108-6115 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Van den Berg, A. W. C., Flikkema, E., Lems, S., Bromley, S. T., Jansen, J. C. (2006). Molecular dynamics-based approach to study the anisotropic self-diffusion of molecules in porous materials with multiple cage types: Application to H-2 in losod. Journal of physical chemistry b, 110 (1), 501-506. RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For pt. I see ibid., vol. 44, p. 927-36 (1997). In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31 (2008), pp. 334-368] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths and is close to a convection CFL condition for large mean free paths. Our analysis is based on very simple energy estimates. © 2010 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional MRI (fMRI) can detect blood oxygenation level dependent (BOLD) hemodynamic responses secondary to neuronal activity. The most commonly used method for detecting fMRI signals is the gradient-echo echo-planar imaging (EPI) technique because of its sensitivity and speed. However, it is generally believed that a significant portion of these signals arises from large veins, with additional contribution from the capillaries and parenchyma. Early experiments using diffusion-weighted gradient-echo EPI have suggested that intra-voxel incoherent motion (IVIM) weighting inherent in the sequence can selectively attenuate contributions from different vessels based on the differences in the mobility of the blood within them. In the present study, we used similar approach to characterize the apparent diffusion coefficient (ADC) distribution within the activated areas of BOLD contrast. It is shown that the voxel values of the ADCs obtained from this technique can infer various vascular contributions to the BOLD signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

*This extract is from Gay P. Crowther's description of the Randall Court pathway (Cowther 1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.