728 resultados para Cemented carbide.
Resumo:
OBJECTIVES: The aim of this prospective study was to evaluate the 5-year performance and success rate of titanium screw-type implants with the titanium plasma spray (TPS) or the sand-blasted, large grit, acid-etched (SLA) surface inserted in a two-stage sinus floor elevation (SFE) procedure in the posterior maxilla. MATERIAL AND METHODS: A total of 59 delayed SFEs were performed in 56 patients between January 1997 and December 2001, using a composite graft with autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) or synthetic porous beta-tricalcium phosphate (beta-TCP). After a healing period averaging 7.75 months, 111 dental implants were inserted. After an additional 8-14-week healing period, all implants were functionally loaded with cemented crowns or fixed partial dentures. The patients were recalled at 12 and 60 months for clinical and radiographic examination. RESULTS: One patient developed an acute infection in the right maxillary sinus after SFE and did not undergo implant therapy. Two of the 111 inserted implants had to be removed because of a developing atypical facial pain, and 11 implants were lost to follow-up and were considered drop-outs. The remaining 98 implants showed favorable clinical and radiographic findings at the 5-year examination. The peri-implant soft tissues were stable over time; the mean probing depths and mean attachment levels did not change during the follow-up period. The measurement of the bone crest levels (DIB values) indicated stability as well. Based on strict success criteria, all 98 implants were considered successfully integrated, resulting in a 5-year success rate of 98% (for TPS implants 89%, for SLA implants 100%). CONCLUSION: This prospective study assessing the performance of dental implants inserted after SFE demonstrated that titanium implants can achieve and maintain successful tissue integration with high predictability for at least 5 years of follow-up in carefully selected patients.
Resumo:
BACKGROUND: It has been shown that different implant designs and different vertical implant positions have an influence on crestal bone levels. The aim of the present study was to evaluate radiographic crestal bone changes around experimental dental implants with non-matching implant-abutment diameters placed submucosally or transmucosally at three different levels relative to the alveolar crest. METHODS: Sixty two-piece dental implants with non-matching implant-abutment diameters were placed in edentulous spaces bilaterally in five foxhounds. The implants were placed submucosally or transmucosally in the left or the right side of the mandible. Within each side, six implants were randomly placed at three distinct levels relative to the alveolar crest. After 12 weeks, 60 crowns were cemented. Radiographs were obtained from all implant sites following implant placement, after crown insertion, and monthly for 6 months after loading. RESULTS: Radiographic analysis revealed very little bone loss and a slight increase in bone level for implants placed at the level of the crest or 1 mm above. The greatest bone loss occurred at implants placed 1 mm below the bone crest. No clinically significant differences regarding marginal bone loss and the level of the bone-to-implant contact were detected between implants with a submucosal or a transmucosal healing. CONCLUSIONS: Implants with non-matching implant-abutment diameters demonstrated some bone loss; however, it was a small amount. There was no clinically significant difference between submucosal and transmucosal approaches.
Resumo:
This case series reports on the use of nonsilica-based high-strength full ceramics for different prosthetic indications. Fifty-two consecutive patients received tooth- or implant-supported zirconia reconstructions during a 2-year period. The observation period for reexamination was 12 to 30 months. The most frequent indications were single crowns and short-span fixed partial dentures. A few implant superstructures were screw-retained, whereas all remaining restorations were cemented on natural teeth or zirconia implant abutments. Clinical examination included biologic (probing depths, bleeding on probing) and esthetic (Papilla Index) parameters, as well as technical complications. No implant was lost or caused any problems, but two teeth were lost after horizontal fracture. Overall, the periodontal parameters were favorable. Fractures of frameworks or implant abutments were not observed. Abutment-screw loosening occurred once for one premolar single crown. Furthermore, five implant crowns in the posterior region exhibited chipping of the porcelain veneering material. With regard to esthetics, no reconstructions were considered unacceptable, but three crowns were remade shortly after delivery. In this short-term study, it was observed that biologic, esthetic, and mechanical properties of zirconia were favorable, and the material could be used in various prosthetic indications on teeth or implants.
Resumo:
Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.
Resumo:
A novel solution to the long standing issue of chip entanglement and breakage in metal cutting is presented in this dissertation. Through this work, an attempt is made to achieve universal chip control in machining by using chip guidance and subsequent breakage by backward bending (tensile loading of the chip's rough top surface) to effectively control long continuous chips into small segments. One big limitation of using chip breaker geometries in disposable carbide inserts is that the application range is limited to a narrow band depending on cutting conditions. Even within a recommended operating range, chip breakers do not function effectively as designed due to the inherent variations of the cutting process. Moreover, for a particular process, matching the chip breaker geometry with the right cutting conditions to achieve effective chip control is a very iterative process. The existence of a large variety of proprietary chip breaker designs further exacerbates the problem of easily implementing a robust and comprehensive chip control technique. To address the need for a robust and universal chip control technique, a new method is proposed in this work. By using a single tool top form geometry coupled with a tooling system for inducing chip breaking by backward bending, the proposed method achieves comprehensive chip control over a wide range of cutting conditions. A geometry based model is developed to predict a variable edge inclination angle that guides the chip flow to a predetermined target location. Chip kinematics for the new tool geometry is examined via photographic evidence from experimental cutting trials. Both qualitative and quantitative methods are used to characterize the chip kinematics. Results from the chip characterization studies indicate that the chip flow and final form show a remarkable consistency across multiple levels of workpiece and tool configurations as well as cutting conditions. A new tooling system is then designed to comprehensively break the chip by backward bending. Test results with the new tooling system prove that by utilizing the chip guidance and backward bending mechanism, long continuous chips can be more consistently broken into smaller segments that are generally deemed acceptable or good chips. It is found that the proposed tool can be applied effectively over a wider range of cutting conditions than present chip breakers thus taking possibly the first step towards achieving universal chip control in machining.
Resumo:
Boron is an element whose metallurgical possibilities have never been fully investigated. The principal reason for this fact seems to lie in the difficulties encountered in preparing elemental boron and its various intermetallic compounds.
Resumo:
During the lead-up to Montana second progressive era, Lee Metcalf and Forrest Anderson, along with others, kept the progressive flame lit in Montana. Metcalf’s political history is replete with close electoral wins because of his commitment to progressive ideals when the times were not always politically favorable for that. As State Legislator, MT Supreme Court Justice, Congressman and eventually as US Senator, Lee won races by as little as 55 votes because he stuck to his guns as a progressive. In Forrest Anderson’s career as a County Attorney, State Legislator, MT Supreme Court Justice and 12 years as MT Attorney General he was respected as a pragmatic practitioner of politics. But during that entire career leading up to his election as Governor, Forrest Anderson was also a stalwart supporter of the progressive agenda exemplified by FDR and the New Deal, which brought folks out of the Great Depression that was brought on by the bad policies of the GOP and big business. As MT’s second progressive period began in 1965, the first important election was Senator Metcalf’s successful re-election battle in 1966 with the sitting MT Governor, Tim Babcock. And the progressive express was really ignited by the election of Forrest Anderson as Governor in 1968 after 16 years of Republican Governors in MT. Gordon Bennett played a rather unique role, being a confidant of Metcalf and Anderson, both who respected his wide and varied experience, his intellect, and his roots in progressivism beginning with his formative years in the Red Corner of NE Montana. Working with Senator Metcalf and his team, including Brit Englund, Vic Reinemer, Peggy McLaughlin, Betty Davis and Jack Condon among others, Bennett helped shape the progressive message both in Washington DC and MT. Progressive labor and farm organizations, part of the progressive coalition, benefitted from Bennett’s advice and counsel and aided the Senator in his career including the huge challenge of having a sitting popular governor run against him for the Senate in 1966. Metcalf’s noted intern program produced a cadre of progressive leaders in Montana over the years. Most notably, Ron Richards transitioned from Metcalf Intern to Executive Secretary of the Montana Democratic Party (MDP) and assisted, along with Bennett, in the 1966 Metcalf-Babcock race in a big way. As Executive Secretary Richards was critical to the success of the MDP as a platform for Forrest Anderson’s general election run and win in 1968. After Forrest’s gubernatorial election, Richards became Executive Assistant (now called Chief of Staff) for Governor Anderson and also for Governor Thomas Judge. The Metcalf progressive strain, exemplified by many including Richards and Bennett, permeated Democratic politics during the second progressive era. So, too, did the coalition that supported Metcalf and his policies. The progressivism of the period of “In the Crucible of Change” was fired up by Lee Metcalf, Forrest Anderson and their supporters and coalitions, and Gordon Bennett was in the center of all of that, helping fire up the crucible, setting the stage for many policy advancements in both Washington DC and Montana. Gordon Bennett’s important role in the 1966 re-election of Senator Lee Metcalf and the 1968 election of Governor Forrest Anderson, as well as his wide experience in government and politics of that time allows him to provide us with an insider’s personal perspective of those races and other events at the beginning of the period of progressive change being documented “In the Crucible of Change,” as well as his personal insights into the larger political/policy picture of Montana. Gordon Bennett, a major and formative player “In the Crucible of Change,” was born in the far northeast town of Scobey, MT in 1922. He attended school in Scobey through the eighth grade and graduated from Helena High School. After attending Carroll College for two years, he received his BA in economics from Carleton College in Northfield, MN. During a brief stint on the east coast, his daily reading of the New York Times (“best newspaper in the world at that time … and now”) inspired him to pursue a career in journalism. He received his MA in Journalism from the University of Missouri and entered the field. As a reporter for the Great Falls Tribune under the ownership and management of the Warden Family, he observed and competed with the rigid control of Montana’s press by the Anaconda Company (the Great Falls Tribune was the only large newspaper in Montana NOT owned by ACM). Following his intellectual curiosity and his philosophical bend, he attended a number of Farm-Labor Institutes which he credits with motivating him to pursue solutions to economic and social woes through the law. In 1956, at the age of 34, he received his Juris Doctorate degree from the Georgetown University Law Center in Washington, DC. Bennett’s varied career included eighteen years as a farmer, four years in the US Army during WWII (1942-46), two years as Assistant MT Attorney General (1957-59) with Forrest Anderson, three years in private practice in Glasgow (1959-61), two years as Associate Solicitor in the Department of Interior in Washington, DC (1961-62), and private law practice in Helena from 1962 to 1969. While in Helena he was an unsuccessful candidate for the Montana Supreme Court (1962) and cemented his previous relationships with Attorney General Forrest Anderson and US Senator Lee Metcalf. Bennett modestly refuses to accept the title of Campaign Manager for either Lee Metcalf (1966 re-election over the challenger, MT Republican Governor Tim Babcock) or Forrest Anderson (his 1968 election as Governor), saying that “they ran their campaigns … we were only there to help.” But he has been generally recognized as having filled that critical role in both of those critical elections. After Governor Anderson’s election in 1968, Bennett was appointed Director of the MT Unemployment Compensation Commission, a position from where he could be a close advisor and confidant of the new Governor. In 1971, Governor Anderson appointed him Judge in the most important jurisdiction in Montana, the 1st Judicial District in Helena, a position he held for seventeen years (1971-88). Upon stepping down from his judgeship, for twenty years (1988-2008) he was a law instructor, mediator and arbitrator. He currently resides in Helena with his wife, Norma Tirrell, former newspaper reporter and researcher/writer. Bennett has two adult children and four grandchildren.
Resumo:
More than 3000 years ago, men began quenching and tempering tools to improve their physical properties. The ancient people found that iron was easier to shape and form in a heated condition. Charcoal was used as the fuel, and when the shaping process was completed, the smiths cooled the piece in the most obvious way, quenching in water. Quite unintentionally, these people stumbled on the process for improving the properties of iron, and the art of blacksmithing began.
Resumo:
During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 microm full width at half maximum (FWHM) values and 100-400 microm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 microm FWHM and 400 microm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 microm to less than 1 microm for a nominal FWHM value of 25 microm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.
Resumo:
PURPOSE: To systematically appraise the impact of mechanical/technical risk factors on implant-supported reconstructions. MATERIAL AND METHODS: A MEDLINE (PubMed) database search from 1966 to April 2008 was conducted. The search strategy was a combination of MeSH terms and the key words: design, dental implant(s), risk, prosthodontics, fixed prosthodontics, fixed partial denture(s), fixed dental prosthesis (FDP), fixed reconstruction(s), oral rehabilitation, bridge(s), removable partial denture(s), overdenture(s). Randomized controlled trials, controlled trials, and prospective and retrospective cohort studies with a mean follow-up of at least 4 years were included. The material evaluated in each study had to include cases with/without exposure to the risk factor. RESULTS: From 3,568 articles, 111 were selected for full text analysis. Of the 111 articles, 33 were included for data extraction after grouping the outcomes into 10 risk factors: type of retentive elements supporting overdentures, presence of cantilever extension(s), cemented versus screw-retained FDPs, angled/angulated abutments, bruxism, crown/implant ratio, length of the suprastructure, prosthetic materials, number of implants supporting an FDP, and history of mechanical/technical complications. CONCLUSIONS: The absence of a metal framework in overdentures, the presence of cantilever extension(s) > 15 mm and of bruxism, the length of the reconstruction, and a history of repeated complications were associated with increased mechanical/technical complications. The type of retention, the presence of angled abutments, the crown-implant ratio, and the number of implants supporting an FDP were not associated with increased mechanical/technical complications. None of the mechanical/technical risk factors had an impact on implant survival and success rates.
Resumo:
OBJECTIVES To evaluate the effect of a tin-containing fluoride (Sn/F) mouth rinse on microtensile bond strength (μTBS) between resin composite and erosively demineralised dentin. MATERIALS AND METHODS Dentin of 120 human molars was erosively demineralised using a 10-day cyclic de- and remineralisation model. For 40 molars, the model comprised erosive demineralisation only; for another 40, the model included treatment with a NaF solution; and for yet another 40, the model included treatment with a Sn/F mouth rinse. In half of these molars (n = 20), the demineralised organic matrix was continuously removed by collagenase. Silicon carbide paper-ground, non-erosively demineralised molars served as control (n = 20). Subsequently, μTBS of Clearfil SE/Filtek Z250 to the dentin was measured, and failure mode was determined. Additionally, surfaces were evaluated using SEM and EDX. RESULTS Compared to the non-erosively demineralised control, erosive demineralisation resulted in significantly lower μTBS regardless of the removal of demineralised organic matrix. Treatment with NaF increased μTBS, but the level of μTBS obtained by the non-erosively demineralised control was only reached when the demineralised organic matrix had been removed. The Sn/F mouth rinse together with removal of demineralised organic matrix led to significantly higher µTBS than did the non-erosively demineralised control. The Sn/F mouth rinse yielded higher μTBS than did the NaF solution. CONCLUSIONS Treatment of erosively demineralised dentin with a NaF solution or a Sn/F mouth rinse increased the bond strength of resin composite. CLINICAL RELEVANCE Bond strength of resin composite to eroded dentin was not negatively influenced by treatment with a tin-containing fluoride mouth rinse.
Resumo:
The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.
Resumo:
Purpose: The objective of this systematic review was to assess and compare the survival and complication rates of implant-supported prostheses reported in studies published in the year 2000 and before, to those reported in studies published after the year 2000. Materials and Methods: Three electronic searches complemented by manual searching were conducted to identify 139 prospective and retrospective studies on implant-supported prostheses. The included studies were divided in two groups: a group of 31 older studies published in the year 2000 or before, and a group of 108 newer studies published after the year 2000. Survival and complication rates were calculated using Poisson regression models, and multivariable robust Poisson regression was used to formally compare the outcomes of older and newer studies. Results: The 5-year survival rate of implant-supported prostheses was significantly increased in newer studies compared with older studies. The overall survival rate increased from 93.5% to 97.1%. The survival rate for cemented prostheses increased from 95.2% to 97.9%; for screw-retained reconstruction, from 77.6% to 96.8%; for implant-supported single crowns, from 92.6% to 97.2%; and for implant-supported fixed dental prostheses (FDPs), from 93.5% to 96.4%. The incidence of esthetic complications decreased in more recent studies compared with older ones, but the incidence of biologic complications was similar. The results for technical complications were inconsistent. There was a significant reduction in abutment or screw loosening by implant-supported FDPs. On the other hand, the total number of technical complications and the incidence of fracture of the veneering material was significantly increased in the newer studies. To explain the increased rate of complications, minor complications are probably reported in more detail in the newer publications. Conclusions: The results of the present systematic review demonstrated a positive learning curve in implant dentistry, represented in higher survival rates and lower complication rates reported in more recent clinical studies. The incidence of esthetic, biologic, and technical complications, however, is still high. Hence, it is important to identify these complications and their etiology to make implant treatment even more predictable in the future.
Resumo:
Background Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents (DES) aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt chromium DES with silicon carbide coating releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) with the durable polymer-based Xience Prime everolimus-eluting stent (X-EES) in an all-comers patient population. Design The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer SES or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least one lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary endpoint target lesion failure (TLF) is a composite of cardiac death, target-vessel myocardial infarction, and clinically-driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for non-inferiority, inclusion of 2,060 patients would provide 80% power to detect non-inferiority of the biodegradable polymer SES compared with the durable polymer EES at a one-sided type I error of 0.05. Clinical follow-up will be continued through five years. Conclusion The BIOSCIENCE trial will determine whether the biodegradable polymer SES is non-inferior to the durable polymer EES with respect to TLF.
Resumo:
Context. To date, calculations of planet formation have mainly focused on dynamics, and only a few have considered the chemical composition of refractory elements and compounds in the planetary bodies. While many studies have been concentrating on the chemical composition of volatile compounds (such as H2O, CO, CO2) incorporated in planets, only a few have considered the refractory materials as well, although they are of great importance for the formation of rocky planets. Aims. We computed the abundance of refractory elements in planetary bodies formed in stellar systems with a solar chemical composition by combining models of chemical composition and planet formation. We also considered the formation of refractory organic compounds, which have been ignored in previous studies on this topic. Methods. We used the commercial software package HSC Chemistry to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e., organic compounds are formed in the gas phase and are non-reactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results. Results show that refractory material represents more than 50 wt % of the mass of solids accreted by the simulated planets with up to 30 wt % of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt % of carbides are present in the planets, and pyroxene and olivine are formed in similar quantities. The model predicts planets that are similar in composition to those of the solar system. Starting from a common initial nebula composition, it also shows that a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. Conclusions. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.