926 resultados para Cement Stabilisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The improved workability effect of latex in dry mortars has not been fully clarified. The purpose of this research was to investigate the influence cif the EVA copolymer on the cement hydration and on the rheological properties of cement pastes. The results pointed to a minor influence of EVA on cement hydration and to a ball-bearing effect. In fact, the shear thinning behavior of reference paste at 15 min after mixing changed to shear thickening owing to the EVA addition. This behavior could be explained by the decrease in the interparticle separation distance as consequence of the solid content increase in case of shearing detachment of weakly adhered EVA particles from the cement particles surfaces. The expected EVA plasticizing effect was observed at 60 min. Such behavior points to the stabilization of EVA on the cement particles surfaces, thus resulting in a steric barrier effect. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Materials and Methods: Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (alpha = 0.05). Results: Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multi link Automix presented values statistically similar to the other two cements. Conclusion: The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents a study of roof thermal efficiency in individual housing for calves exposed to sun and shade through infrared thermography, internal temperature and thermal comfort indexes. Four different individual housing for calves covered with asbestos-free fiber-cement corrugated sheets were evaluated. Three of them were directly exposed to the sun: (i) corrugated sheets painted white in the external surface, (ii) corrugated sheets without painting and (iii) with screen shade fabric installed 0.10m under de internal surface of the corrugated sheet. The fourth individual housing was installed in the shade area and covered with unpainted corrugated fiber-cement sheets. The analysis was taken for 21 days at 11h00min, 14h00min and 17h00min. The results indicate significant variations in the roofing surface temperature and thermal comfort indexes among the treatments exposed to the sun and shade, for all the evaluations during the day. The infrared thermography images were effective for better understanding the heat transfer processes from the roof to the internal environment of the housing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P < .05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. (J Endod 2012;38:394-397)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we compared the microleakage of conventional glass ionomer cement (GIC) restorations following the use of different methods of root caries removal. In vitro root caries were induced in 75 human root dentin samples that were divided in five groups of 15 each according to the method used for caries removal: in group 1 spherical carbide burs at low speed were used, in group 2 a hand-held excavator was used, and in groups 3 to 5 an Er,Cr:YSGG laser was used at 2.25 W, 40.18 J/cm(2) (group 3), 2.50 W, 44.64 J/cm(2) (group 4) and 2.75 W, 49.11 J/cm(2) (group 5). The air/water cooling during irradiation was set to 55%/65% respectively. All cavities were filled with GIC. Five samples from each group were evaluated by scanning electron microscopy (SEM) and the other ten samples were thermocycled and submitted to a microleakage test. The data obtained were compared by ANOVA followed by Fisher's test (pa parts per thousand currency sign0.05). Group 4 showed the lowest microleakage index (56.65 6.30; p < 0.05). There were no significant differences among the other groups. On SEM images samples of groups 1 and 2 showed a more regular interface than the irradiated samples. Demineralized dentin below the restoration was observed, that was probably affected dentin. Group 4 showed the lowest microleakage values compared to the other experimental groups, so under the conditions of the present study the method that provided the lowest microleakage was the Er,Cr:YSGG laser with a power output of 2.5 W yielding an energy density of 44.64 J/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to evaluate the biocompatibility of calcium aluminate cement (EndoBinder) in subcutaneous tissue of rats. Methods: Fifteen rats, weighing 300 g, were separated into 3 groups (n = 5) in accordance with the time of death (7, 21, 42 days). Two incisions were made in the dorsal subcutaneous tissue of each rat in which were implanted 2 polyethylene tubes filled with the test materials, Endo Binder (EB) and Grey MTA (GMTA). The external tube walls were considered the negative control group (CG). After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group, at each time interval of analysis. Results: From the morphologic and morphometric analyses by using a score of (0-3) (50, 100, and 400x), results showed absence of inflammatory reaction (0) for EB after 42 days. However, for GMTA, a slight inflammatory reaction (1) was observed after 42 days, which means the persistence of a chronic inflammatory process. When compared with CG, tissue reaction ranging from discrete (1-7 days) to absent (0-42 days) was observed. Conclusions: EndoBinder presented satisfactory tissue reaction; it was biocompatible when tested in subcutaneous tissue of rats. (J Endod 2012;38:367-371)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The use of external sources of energy may accelerate the setting rate of glass ionomer cements (GICs) allowing better initial mechanical properties. Aim. To investigate the influence of ultrasound and halogen light on the microleakage and hardness of enamel adjacent to GIC restorations, after artificial caries challenge. Design. Cavities were prepared in 60 primary canines, restored with GIC, and randomly distributed into three groups: control group (CG), light group (LG) - irradiation with a halogen lightcuring unit for 60 s, and ultrasonic group (UG) application of ultrasonic scaler device for 15 s. All specimens were then submitted to a cariogenic challenge in a pH cycling model. Half of sample in each group were immersed in methylene blue for 4 h and sectioned for dye penetration analysis. The remaining specimens were submitted to Knoop cross-sectional microhardness assessments, and mineral changes were calculated for adjacent enamel. Results. Data were compared using Kruskal-Wallis test and two- way ANOVA with 5% significance. Higher dye penetration was observed for the UG (P < 0.01). No significant mineral changes were observed between groups (P = 0.844). Conclusion. The use of halogen light- curing unit does not seem to interfere with the properties of GICs, whereas the use of ultrasound can affect its marginal sealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the biocompatibility and the setting time of Portland cement clinker with or without 2% or 5% calcium sulfate and MTA-CPM. Twenty-four mice (Rattus norvegicus) received subcutaneously polyethylene tubes filled with Portland cement clinker with or without 2% or 5% calcium sulfate and MTA. After 15, 30 and 60 days of implantation, the animals were killed and specimens were prepared for microscopic analysis. For evaluation of the setting time, each material was analyzed using Gilmore needles weighing 113.5 g and 456.5 g, according to the ASTM specification Number C266-08 guideline. Data were analyzed by ANOVA and Tukey's test for setting time and Kruskal-Wallis and Dunn test for biocompatibility at 5% significance level. Histologic observation showed no statistically significant difference of biocompatibility (p>0.05) among the materials in the subcutaneous tissues. For the setting time, clinker without calcium sulfate showed the shortest initial and final setting times (6.18 s/21.48 s), followed by clinker with 2% calcium sulfate (9.22 s/25.33 s), clinker with 5% calcium sulfate (10.06 s/42.46 s) and MTA (15.01 s/42.46 s). All the tested materials showed biocompatibility and the calcium sulfate absence shortened the initial and final setting times of the white Portland cement clinker

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC) was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO), determined by weight. Mineral trioxide aggregate (MTA) was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/ Tukey tests (p < 0.05). The cements in which bismuth oxide was added showed radiopacity corresponding to the ISO recommendations ( > 3 mm equivalent of Al). The MTA group was statistically similar to the CSC / 30% BO group (p > 0.05). In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC / 50% BO group (p < 0.05). The comparison between 24 hours and 7 days showed higher ΔE for the MTA group, with statistical differences for the CSC / 15% BO and CSC / 50% BO groups (p < 0.05). After 30 days, CSC showed statistically higher ΔE values than CSC / 30% BO and CSC / 50% BO (p < 0.05). In conclusion, the increase in radiopacity provided by bismuth oxide has no relation to the color alteration of calcium silicate-based cements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (?=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem: Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. Purpose: The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Material and methods: Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dualpolymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (?=.05). Results: ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (P<.05). The highest push-out strength results with root location were obtained with Luting and Lining (S3) (19.5 ±4.9 MPa), Ketac Cem (S2) (18.6 ±5.5 MPa), and Luting and Lining (S1) (18.0 ±7.6 MPa). The lowest mean values were recorded with Variolink II (S1) (4.6 ±4.0 MPa), Variolink II (S2) (1.6 ±1.5 MPa), and Rely X ARC (S3) (0.9 ±1.1 MPa). Conclusions: Self-adhesive cements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement.