995 resultados para Cellular cycle
Resumo:
Objectives The site of pharmacological activity of raltegravir is intracellular. Our aim was to determine the extent of raltegravir cellular penetration and whether raltegravir total plasma concentration (C(tot)) predicts cellular concentration (C(cell)). Methods Open-label, prospective, pharmacokinetic study on HIV-infected patients on a stable raltegravir-containing regimen. Plasma and peripheral blood mononuclear cells were simultaneously collected during a 12 h dosing interval after drug intake. C(tot) and C(cell) of raltegravir, darunavir, etravirine, maraviroc and ritonavir were measured by liquid chromatography coupled to tandem mass spectrometry after protein precipitation. Longitudinal mixed effects analysis was applied to the C(cell)/C(tot) ratio. Results Ten HIV-infected patients were included. The geometric mean (GM) raltegravir total plasma maximum concentration (C(max)), minimum concentration (C(min)) and area under the time-concentration curve from 0-12 h (AUC(0-12)) were 1068 ng/mL, 51.1 ng/mL and 4171 ng·h/mL, respectively. GM raltegravir cellular C(max), C(min) and AUC(0-12) were 27.5 ng/mL, 2.9 ng/mL and 165 ng·h/mL, respectively. Raltegravir C(cell) corresponded to 5.3% of C(tot) measured simultaneously. Both concentrations fluctuate in parallel, with C(cell)/C(tot) ratios remaining fairly constant for each patient without a significant time-related trend over the dosing interval. The AUC(cell)/AUC(tot) GM ratios for raltegravir, darunavir and etravirine were 0.039, 0.14 and 1.55, respectively. Conclusions Raltegravir C(cell) correlated with C(tot) (r = 0.86). Raltegravir penetration into cells is low overall (∼5% of plasma levels), with distinct raltegravir cellular penetration varying by as much as 15-fold between patients. The importance of this finding in the context of development of resistance to integrase inhibitors needs to be further investigated.
Resumo:
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Resumo:
Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance.
Resumo:
Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.
Resumo:
In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division, eventually leading to a state of cellular senescence. Ectopic expression of telomerase results in the extension of their replicative life spans without inducing changes associated with transformation. However, it is yet unknown whether somatic cells that overexpress telomerase are physiologically indistinguishable from normal cells. Using CD8+ T lymphocyte clones overexpressing telomerase, we investigated the molecular mechanisms that regulate T cell proliferation. In this study, we show that early passage T cell clones transduced or not with human telomerase reverse transcriptase displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in human telomerase reverse transcriptase-transduced cells with extended life spans. These cells, despite maintaining high expression levels of genes involved in the cell cycle progression, also showed increased expression in several genes found in common with normal aging T lymphocytes. Strikingly, late passage T cells overexpressing telomerase accumulated the cyclin-dependent inhibitors p16Ink4a and p21Cip1 that have largely been associated with in vitro growth arrest. We conclude that alternative growth arrest mechanisms such as those mediated by p16Ink4a and p21Cip1 still remained intact and regulated the growth potential of cells independently of their telomere status.
Resumo:
Progresses in pediatric oncology over the last decades have been dramatic and allow current cure rates above 80%. There are mainly due to multicentre clinical trials aiming at optimizing chemotherapy protocols as well as local therapies in a stepwise approach. Most of the new anticancer drugs currently in development are based on targeted therapies, directed to specific targets present only in or on tumor cells, like growth factor receptors, mechanisms involved in proliferation, DNA repair, apoptosis, tumor invasion or angiogenesis. Concerning bone marrow transplantation also, new strategic approaches are in advanced development. They aim at reducing treatment induced toxicity and enhancing efficacy at the same time. This short paper would like to point out these new technologies, which should be known by the general practitioner.
Resumo:
Atomic force microscope is an invaluable device to explore living specimens at a nanometric scale. It permits to image the topography of the sample in 3D, to measure its mechanical properties and to detect the presence of specific molecules bound on its surface. Here we describe the procedure to gather such a data set on living macrophages.
Resumo:
Référence bibliographique : Rol, 57958
Resumo:
Référence bibliographique : Rol, 57960
Resumo:
Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.
Resumo:
Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder marked by the loss of dopaminergic neurons (in particular in the substantia nigra) causing severe impairment of movement coordination and locomotion, associated with the accumulation of aggregated α-synuclein (α-Syn) into proteinaceous inclusions named Lewy bodies. Various early forms of misfolded α-Syn oligomers are cytotoxic. Their formation is favored by mutations and external factors, such as heavy metals, pesticides, trauma-related oxidative stress and heat shock. Here, we discuss the role of several complementing cellular defense mechanisms that may counteract PD pathogenesis, especially in youth, and whose effectiveness decreases with age. Particular emphasis is given to the 'holdase' and 'unfoldase' molecular chaperones that provide cells with potent means to neutralize and scavenge toxic protein conformers. Because chaperones can specifically recognize misfolded proteins, they are key specificity factors for other cellular defenses, such as proteolysis by the proteasome and autophagy. The efficiency of the cellular defenses decreases in stressed or aging neurons, leading to neuroinflammation, apoptosis and tissue loss. Thus, drugs that can upregulate the molecular chaperones, the ubiquitin-proteasome system and autophagy in brain tissues are promising avenues for therapies against PD and other mutation-, stress- or age-dependent protein-misfolding diseases.
Resumo:
Canids are natural reservoirs of Leishmania infantum and have been promoted as experimental hosts to decipher the pathogenesis of human visceral leishmaniasis (VL). In this study, the presence of IgG antibodies as well as the presence of mononuclear leukocytes reactive to different cysteine proteinases (CPs) were examined in 13 L. infantum-infected dogs (six with symptoms, seven asymptomatic). Cysteine proteinases which belong to papain-like enzymes known as clan CA are the most studied CPs of parasite protozoa. These molecules are expressed by the intracellular stages of the parasite and could be immunogenic. We studied Type II CP (CPA) and Type I CP (CPB) with its long C-terminal extension (CTE) which could be highly immunogenic. We showed that the level of antibodies reactive to rCPA is low in both symptomatic and asymptomatic dogs. In contrast, when CPB and CTE were used as antigens, the level of total IgG (with IgG2 superior to IgG1) reached higher values in asymptomatic dogs than in dogs with VL. While the peripheral blood mononuclear cell (PBMC) reactivity was significant when cultured in the presence of freezed/thawed (F/T) lysate, it remained low in presence of CP although always higher for PBMC recovered from asymptomatic dogs. We showed the importance of CPB and CTE in particular as a target of immune response and their potential use for serodiagnosis in asymptomatic dogs.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.
Resumo:
SUMMARY : The function of sleep for the organism is one of the most persistent and perplexing questions in biology. Current findings lead to the conclusion that sleep is primarily for the brain. In particular, a role for sleep in cognitive aspects of brain function is supported by behavioral evidence both in humans and animals. However, in spite of remarkable advancement in the understanding of the mechanisms underlying sleep generation and regulation, it has been proven difficult to determine the neurobiological mechanisms underlying the beneficial effect of sleep, and the detrimental impact of sleep loss, on learning and memory processes. In my thesis, I present results that lead to several critical steps forward in the link between sleep and cognitive function. My major result is the molecular identification and physiological analysis of a protein, the NR2A subunit of NMDA receptor (NMDAR), that confers sensitivity to sleep loss to the hippocampus, a brain structure classically involved in mnemonic processes. Specifically, I used a novel behavioral approach to achieve sleep deprivation in adult C57BL6/J mice, yet minimizing the impact of secondary factors associated with the procedure,.such as stress. By using in vitro electrophysiological analysis, I show, for the first time, that sleep loss dramatically affects bidirectional plasticity at CA3 to CA1 synapses in the hippocampus, a well established cellular model of learning and memory. 4-6 hours of sleep loss elevate the modification threshold for bidirectional synaptic plasticity (MT), thereby promoting long-term depression of CA3 to CA 1 synaptic strength after stimulation in the theta frequency range (5 Hz), and rendering long-term potentiation induction.more difficult. Remarkably, 3 hours of recovery sleep, after the deprivation, reset the MT at control values, thus re-establishing the normal proneness of synapses to undergo long-term plastic changes. At the molecular level, these functional changes are paralleled by a change in the NMDAR subunit composition. In particular, the expression of the NR2A subunit protein of NMDAR at CA3 to CA1 synapses is selectively and rapidly increased by sleep deprivation, whereas recovery sleep reset NR2A synaptic content to control levels. By using an array of genetic, pharmacological and computational approaches, I demonstrate here an obligatory role for NR2A-containing NMDARs in conveying the effect of sleep loss on CA3 to CAl MT. Moreover, I show that a genetic deletion of the NR2A subunit fully preserves hippocampal plasticity from the impact of sleep loss, whereas it does not alter sleepwake behavior and homeostatic response to sleep deprivation. As to the mechanism underlying the effects of the NR2A subunit on hippocampal synaptic plasticity, I show that the increased NR2A expression after sleep loss distinctly affects the contribution of synaptic and more slowly recruited NMDAR pools activated during plasticity-induction protocols. This study represents a major step forward in understanding the mechanistic basis underlying sleep's role for the brain. By showing that sleep and sleep loss affect neuronal plasticity by regulating the expression and function of a synaptic neurotransmitter receptor, I propose that an important aspect of sleep function could consist in maintaining and regulating protein redistribution and ion channel trafficking at central synapses. These findings provide a novel starting point for investigations into the connections between sleep and learning, and they may open novel ways for pharmacological control over hippocampal .function during periods of sleep restriction. RÉSUMÉ DU PROJET La fonction du sommeil pour l'organisme est une des questions les plus persistantes et difficiles dans la biologie. Les découvertes actuelles mènent à la conclusion que le sommeil est essentiel pour le cerveau. En particulier, le rôle du sommeil dans les aspects cognitifs est soutenu par des études comportementales tant chez les humains que chez les animaux. Cependant, malgré l'avancement remarquable dans la compréhension des mécanismes sous-tendant la génération et la régulation du sommeil, les mécanismes neurobiologiques qui pourraient expliquer l'effet favorable du sommeil sur l'apprentissage et la mémoire ne sont pas encore clairs. Dans ma thèse, je présente des résultats qui aident à clarifier le lien entre le sommeil et la fonction cognitive. Mon résultat le plus significatif est l'identification moléculaire et l'analyse physiologique d'une protéine, la sous-unité NR2A du récepteur NMDA, qui rend l'hippocampe sensible à la perte de sommeil. Dans cette étude, nous avons utilisé une nouvelle approche expérimentale qui nous a permis d'induire une privation de sommeil chez les souris C57BL6/J adultes, en minimisant l'impact de facteurs confondants comme, par exemple, le stress. En utilisant les techniques de l'électrophysiologie in vitro, j'ai démontré, pour la première fois, que la perte de sommeil est responsable d'affecter radicalement la plasticité bidirectionnelle au niveau des synapses CA3-CA1 de l'hippocampe. Cela correspond à un mécanisme cellulaire de l'apprentissage et de la mémoire bien établi. En particulier, 4-6 heures de privation de sommeil élèvent le seuil de modification pour la plasticité synaptique bidirectionnelle (SM). Comme conséquence, la dépression à long terme de la transmission synaptique est induite par la stimulation des fibres afférentes dans la bande de fréquences thêta (5 Hz), alors que la potentialisation à long terme devient plus difficile. D'autre part, 3 heures de sommeil de récupération sont suffisant pour rétablir le SM aux valeurs contrôles. Au niveau moléculaire, les changements de la plasticité synaptiques sont associés à une altération de la composition du récepteur NMDA. En particulier, l'expression synaptique de la protéine NR2A du récepteur NMDA est rapidement augmentée de manière sélective par la privation de sommeil, alors que le sommeil de récupération rétablit l'expression de la protéine au niveau contrôle. En utilisant des approches génétiques, pharmacologiques et computationnelles, j'ai démontré que les récepteurs NMDA qui expriment la sous-unité NR2A sont responsables de l'effet de la privation de sommeil sur le SM. De plus, nous avons prouvé qu'une délétion génétique de la sous-unité NR2A préserve complètement la plasticité synaptique hippocampale de l'impact de la perte de sommeil, alors que cette manipulation ne change pas les mécanismes de régulation homéostatique du sommeil. En ce qui concerne les mécanismes, j'ai .découvert que l'augmentation de l'expression de la sous-unité NR2A au niveau synaptique modifie les propriétés de la réponse du récepteur NMDA aux protocoles de stimulations utilisés pour induire la plasticité. Cette étude représente un pas en avant important dans la compréhension de la base mécaniste sous-tendant le rôle du sommeil pour le cerveau. En montrant que le sommeil et la perte de sommeil affectent la plasticité neuronale en régulant l'expression et la fonction d'un récepteur de la neurotransmission, je propose qu'un aspect important de la fonction du sommeil puisse être finalisé au règlement de la redistribution des protéines et du tracking des récepteurs aux synapses centraux. Ces découvertes fournissent un point de départ pour mieux comprendre les liens entre le sommeil et l'apprentissage, et d'ailleurs, ils peuvent ouvrir des voies pour des traitements pharmacologiques dans le .but de préserver la fonction hippocampale pendant les périodes de restriction de sommeil.