964 resultados para Carotenoid Cleavage Dioxygenase
Resumo:
Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.
Resumo:
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.
Resumo:
Processing of Sesbania mosaic virus (SeMV) polyprotein 2a and 2ab was reanalyzed in the view of the new genome organization of sobemoviruses. Polyprotein 2a when expressed in E coli, from the new cDNA clone, got cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8, respectively. Additionally, a novel cleavage was identified within the protease domain at position E132-S133, which was found to be essential for efficient polyprotein processing. Products, corresponding to cleavages identified in E. coli, were also detected in infected Sesbania leaves. Interestingly, though the sites are exactly the same in polyprotein 2ab, it got cleaved between Protease-VPg but not between VPg-RdRp. This indicates to a differential cleavage preference, governed probably by the conformation of 2ab. Also, the studies revealed that, in SeMV, processing is regulated by mode of cleavage and context of the cleavage site.
Resumo:
DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.
Resumo:
Oxovanadium(IV) complexes [VOCl(B)(2)]Cl (1-3) of phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3), have been prepared, characterized and their DNA and protein binding, photo-induced DNA and protein cleavage activity andm photocytotoxicity have been studied. Complex 2, structurally characterized by X-ray crystallography, shows the presence of a vanadyl group in VOClN4 coordination geometry. The dpq ligand displays a chelating mode of binding with a N-donor site trans to the oxo-group. The chloride ligand is cis to the oxo-group. The one-electron paramagnetic complexes show a d-d band near 715 nm in 15% DMF-Tris-HCl buffer. The complexes are redox active exhibiting a V(IV)/V(III) redox couple within -0.5 to -0.7 V vs. SCE in 20% DMF-Tris-HCl/0.1 M KCl. The complexes bind to calf thymus (CT) DNA in the order: 3 (dppz) > 2 (dpq) > 1 (phen). The binding data reveal the groove and/or partial intercalative DNA binding nature of the complexes. The complexes show chemical nuclease'' activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide via a hydroxyl radical pathway. The dpq and dppz complexes are efficient photocleavers of DNA in UV-A light of 365 nm forming reactive singlet oxygen (O-1(2)) and hydroxyl radical ((OH)-O-center dot) species. Complexes 2 and 3 also show DNA cleavage activity in red light (> 750 nm) by an exclusive (OH)-O-center dot pathway. The complexes display a binding propensity to bovine serum albumin (BSA) protein giving K-BSA values in the range of 7.1 x 10(4)-1.8 x 10(5) M-1. The dppz complex 3 shows BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via (OH)-O-center dot pathway. The dppz complex 3 exhibits significant PDT effect in human cervical cancer HeLa cells giving IC50 values of 1.0 mu M and 12.0 mu M in UV-A and visible light, respectively (IC50 = > 100 mu M in the dark).
Resumo:
The existing vaccines against influenza are based on the generation of neutralizing antibody primarily directed against surface proteins-hernagglutinin and neuraminidase. In this work, we have computationally defined conserved T cell epitopes of proteins of influenza virus H5N1 to help in the design of a vaccine with haplotype specificity for a target population. The peptides from the proteome of H5NI irus which are predicted to bind to different HLAs, do not show similarity with peptides of human proteorne and are also identified to be generated by proteolytic cleavage. These peptides could be made use of in the design of either a DNA vaccine or a subunit vaccine against V influenza. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Iron(III) complexes [Fe(L)(2)]Cl (1-3), where L is monoanionic N-salicylidene-arginine (sal-argH for 1), hydroxynaphthylidene-arginine (nap-argH for 2) and N-salicylidene-lysine (sal-lysH for 3), were prepared and their DNA binding and photo-induced DNA cleavage activity studied. Complex 3 as its hexafluorophosphate salt [Fe(sal-lysH)(2)](PF6)center dot 6H(2)O (3a) was structurally characterized by single crystal Xray crystallography. The crystals belonged to the triclinic space group P-1. The complex has two tridentate ligands in FeN2O4 coordination geometry with two pendant cationic amine moieties. Complexes 1 and 2 with two pendant cationic guanidinium moieties are the structural models for the antitumor antibiotics netropsin. The complexes are stable and soluble in water. They showed quasi-reversible Fe(III)/Fe(II) redox couple near 0.6 V in H2O-0.1 M KCl. The high-spin 3d(5)-iron(III) complexes with mu(eff) value of similar to 5.9 mu(B) displayed ligand-to-metal charge transfer electronic band near 500 mm in Tris-HCl buffer. The complexes show binding to Calf Thymus (CT) DNA. Complex 2 showed better binding propensity to the synthetic oligomer poly(dA)center dot poly(dT) than to CT-DNA or poly(dG)center dot poly(dC). All the complexes displayed chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent and cleaved supercoiled pUC19 DNA to its nicked circular form. They exhibited photo-induced DNA cleavage activity in UV-A light and visible light via a mechanistic pathway that involves the formation of reactive hydroxyl radical species. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Enantiospecific synthesis of thaps-8-en-5-ol, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. (R)-Carvone has been employed as the chiral starting material and a combination of intramolecular alkyation and Criegec fragmentation have been employed for intramolecular stereospecific transfer of the chirality. An intramolecular diazoketone cyclopropanation and regioselective cyclopropane ring cleavage reactions have been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
BTK-2, a 32 residue scorpion toxin initially identified in the venom of red Indian scorpion Mesobuthus tamulus was cloned, overexpressed and purified using Cytochrome 155 fusion protein system developed in our laboratory. The synthetic gene coding for the peptide was designed taking into account optimal codon usage by Escherichia coli. High expression levels of the fusion protein enabled facile purification of this peptide. The presence of disulfide bonded isomers, occurring as distinctly populated states even in the fusion protein, were separated by gel filtration chromatography. The target peptide was liberated from the host protein by Tev protease cleavage and subsequent purification was achieved using RP-HPLC methods. Reverse phase HPLC clearly showed the presence of at least two isomeric forms of the peptide that were significantly populated. The oxidative folding of BTK-2 was achieved under ambient conditions during the course of purification. Structural characterization of the two forms, by solution homonuclear and heteronuclear NMR methods, has shown that these two forms exhibit significantly different structural properties, and represent the natively folded and a "misfolded" form of the peptide. The formation of properly folded BTK-2 as a major fraction without the use of in vitro oxidative refolding methods clearly indicate the versatility of the Cytochrome b(5) fusion protein system for the efficient production of peptides for high resolution NMR studies.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.
Resumo:
A new ternary iron(III) complex [FeL(dpq)] containing dipyridoquinoxaline (dpq) and 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (H3L) is prepared and structurally characterized by X-ray crystallography. The high-spin complex with a FeN3O3 core shows a quasi-reversible iron(III)/iron(II) redox couple at -0.62 V (vs SCE) in DMF/0.1 M TBAP and a broad visible band at 470 nm in DMF/Tris buffer. Laser photoexcitation of this phenolate (L)-to-iron(III) charge-transfer band at visible wavelengths including red light of >= 630 nm leads to cleavage of supercoiled pUC19 DNA to its nicked circular form via a photoredox pathway forming hydroxyl radicals.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.