884 resultados para Carbon composites
Resumo:
The present invention is directed to catalysts for the conversion of oxides of carbon to methane and/or other hydrocarbons and to precursors of such catalysts. The catalyst precursors include one or more refractory oxides selected from the group consisting of rare earth oxides and rare earth contg. perovskites, the precursor including nickel or nickel cations sufficient for a catalyst obtainable by reducing the precursor to be capable of at least partially reducing an oxide of carbon to a hydrocarbon product. Processes for the prepn. of such catalysts and catalyst precursors are also disclosed, as are processes for the conversion of oxides of carbon to methane and/or other hydrocarbons. [on SciFinder(R)]
Resumo:
OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).
Resumo:
A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.
Resumo:
Polyaniline (PANI)/Pt nanoparticle composites can be prepared by the spontaneous redox reaction of K2PtCl4 with PANI, to yield thin films that show electrocatalytic properties in both acidic and neutral aqueous media.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.
Resumo:
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above-ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits in order to achieve systematically maximal co-benefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-making rules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models in order to find restoration solutions that maximize simultaneously biodiversity, carbon stocks and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration and other socio-economic co-benefits under global change.
Resumo:
CFRP material has been widely used to strengthen concrete structures. There is an increasing trend of using CFRP in strengthening steel structures. The bond between steel and CFRP is a key issue. Relatively less work has been done on the bond between CFRP and a curved surface which is often found in tubular structures. This paper reports a study on the bond between CFRP and steel tubes. A series of tensile tests were conducted with different bond lengths and number of layers. The types of adhesive and specimen preparation methods varied in the testing program. High modulus CFRP was used. Tests were carried out to measure the modulus and tensile strength of CFRP. Strain gages were mounted on different layers of CFRP. The stress distributions across the layers of the CFRP were established. Models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
Carbon fiber reinforced polymer (CFRP) sheets have established a strong position as an effective method for innovative structural rehabilitation. However, the use of externally bonded CFRP in the repair and rehabilitation of steel structures is a relatively new technique that has the potential to improve the way structures are repaired. An important step toward understanding bond behaviour is to have an estimation of local bond stress versus slip relationship. The current study aims to establish the bond-slip model for CFRP sheets bonded to steel plate. To obtain the shear stress versus slippage relationship, a series of double strap tension type bond tests were conducted. This paper reports on the findings of the experimental studies. The strain and stress distributions measured in the specimens for two different bond lengths. The results show a preliminary bi-linear bond-slip model may be adopted for CFRP sheet bonded with steel plate.
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.
Resumo:
Exploring advanced materials for efficient capture and separation of CO2 is important for CO2 reduction and fuel purification. In this study, we have carried out first-principles density functional theory calculations to investigate CO2, N2, CH4, and H2 adsorption on the amphoteric regioselective B80 fullerene. Based on our calculations, we find that CO2 molecules form strong interactions with the basic sites of the B80 by Lewis acid–base interactions, while there are only weak bindings between the other three gases (N2, CH4, and H2) and the B80 adsorbent. The study also provides insight into the reaction mechanism of capture and separation of CO2 using the electron deficient B80 fullerene.
Resumo:
We describe a novel and facile approach to covalently graft molecules containing stable free radicals onto carbon surfaces including graphene, carbon nanotubes, glassy carbon and carbon fibres. The new technique employs a stable aryl nitroxide radical diazonium tetrafluoroborate salt. The salt may be isolated and added to carbon surfaces in solution, suspension or electrochemically and represents a convenient, versatile and highly efficient means to adorn graphitic materials with large numbers of free radical spin systems
Resumo:
Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered.