920 resultados para Carbon Steel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A imagiologia por fluorescência é uma técnica extremamente útil em investigação biomédica. Actualmente existe uma vasta gama de fluoróforos disponíveis para marcação por fluorescência. Contudo estes marcadores possuem limitações que condicionam a sua aplicação em sistemas biológicos. As nanopartículas de carbono fluorescentes (CNPs) constituem uma recente classe de marcadores fluorescentes com elevada biocompatibilidade. O objectivo deste trabalho consistiu em produzir de CNPs através de métodos simples, a sua caracterização e aplicação como marcadores celulares para visualização de células em microscopia de fluorescência. Inicialmente foram produzidas nanopartículas (NPs) seguindo métodos mencionados na literatura. Seguidamente foram produzidas CNPs a partir de PAA, por via hidrotérmica, e a partir da carbonização de grãos de cortiça para as quais foi feito um estudo do efeito da variável temperatura de carbonização. Das amostras produzidas, nove foram devidamente estudadas. A espectroscopia de absorção no UV-Vis revelou perfis de absorção característicos para este tipo de NPs. A emissão de fluorescência das CNPs caracterizadada por espectroscopia de fluorescência evidenciou comportamentos emissivos típicos destas NPs tais como dependência do máximo de emissão com o comprimento de onda de excitação. A intensidade da fluorescência das CNPs sintetizadas por via hidrotérmica é, em geral, maior com rendimentos quânticos de fluorescência a variar entre 4 e 11%. Os rendimentos quânticos das CNPs produzidas por carbonização variam entre 2 e 5%. As imagens de microscopia electrónica demonstram que as CNPs possuíam formas esféricas. Os tamanhos determinados por SEM, TEM e DLS revelaram que as dimensões das NPs caem entre os 2 e 150nm. Por DRX constatou-se que as CNPs possuem uma estrutura atómica desorganizada. A análise FTIR mostrou que as amostras de CNPs produzidas a partir de macromoléculas pelo método hidrotérmico possuíam uma grande quantidade de precursor não degradado. Para as restantes CNPs foi verificada a presença de grupos funcionais polares que lhes conferem solubilidade em meio aquoso. Com 1H-RMN verificou-se uma diminuição de grupos alifáticos e aumento de grupos aromáticos nas CNPs de cortiça carbonizada, com o aumento da temperatura de carbonização. O potencial ζ da amostra obtida com maior temperatura de carbonização foi -25,7mV. Nos estudos in vitro realizados apenas as NPs produzidas a partir de ácido cítrico e etilenodiamina por via hidrotérmica marcaram eficazmente as linhas celulares de osteoblastos e de fibroblastos. A eficiência da marcação aparenta ser dependente do tempo de incubação com CNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports the work performed in the optimization of deposition parameters of Multi – Walled Carbon Nanotubes (MWCNT) targeting the development of a Field Effect Transistors (FET) on paper substrates. The CNTs were dispersed in a water solution with sodium dodecyl sulphate (SDS) through ultrasonication, ultrasonic bath and a centrifugation to remove the supernatant and have a homogeneous solution. Several deposition tests were performed using different types of CNTs, dis-persants, papers substrates and deposition techniques, such as spray coating and inkjet printing. The characterization of CNTs was made by Scanning Electron Microscopy (SEM) and Hall Effect. The most suitable CNT coatings able to be used as semiconductor in FETs were deposited by spray coat-ing on a paper substrate with hydrophilic nanoporous surface (FS2) at 100 ºC, 4 bar, 10 cm height, 5 second of deposition time and 90 seconds of drying between steps (4 layers of CNTs were deposited). Planar electrolyte gated FETs were produced with these layers using gold-nickel gate, source and drain electrodes. Despite the small current modulation (Ion/Ioff ratio of 1.8) one of these devices have p-type conduction with a field effect mobility of 1.07 cm2/V.s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pneumoniae is a common asymptomatic commensal of the human nasopharynx. However, it is better known as a threatening pathogen that causes serious diseases such as pneumonia, meningitis and sepsis, as well as other less severe but more prevalent infections (e.g. otitis media). With the increase of antibiotic resistance and the limited efficacy of vaccines, pneumococcal infections remain a major problem. Therefore, the discovery of new therapeutic targets and preventive drugs are in high demand.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: A isquémia cerebral é uma das doenças mais predominantes a nivel mundial, sendo uma das principais causas de mortalidade e invalidez. Parte da propagação de dano no cérebro é causado por inflamação descontrolada, causada principalmente por disfunção da microglia. Desta forma, existe a necessidade de tentar desenvolver estratégias para melhor compreender e modular as acções destas células. O monóxido de carbono (CO), é uma molécula endógena com provas dadas como anti-neuroinflamatório em vários modelos. Assim, o principal objectivo do trabalho foi o estudo do CO como um modulador da acção da microglia, com principal foco dado à comunicação entre estas células e neurónios, tentando entender se existe um efeito neuroprotector por inibição da inflamação. Um protocolo de meio condicionado foi estabelecido usando as linhas celulares BV2 e SH-SY5Y, de microglia e neurónio. A molécula CORM-A1, que liberta expontaniamente CO, foi usada como método de entrega da molécula às celulas. Demonstrámos que o pre-tratamento de células BV2 com CORM-A1 gera neuroprotecção já que reduz a morte celular de neurónios SH-SY5Y quando são incubados com meio condicionado de microglia activada em conjunto com o pró-oxidante t-BHP (tert-butil hidroperóxido). Assim, considerámos que o CO promove neuroprotecção ao inibir as acções inflamatórias da microglia. O papel anti-inflamatório da molécula CORM-A1 foi confirmado quando se verificou que pré-tratamento desta molécula em microglia BV2 limita a secreção de TNF-α mas estimula a secreção de IL-10. Por último, a CORM-A1 induziu a expressão do receptor da microglia CD200R1, molécula que participa na comunicação neurónio-microglia e fundamental para a modulação das acções inflamatórias destas últimas. Em suma, o nosso trabalho reforçou as propriedades anti-neuroinflamatórias do CO e uma capacidade de modular viabilidade neuronal através do seu efeito a nível de comunicação célula-célula. ---------------------------- ABSTRACT: Brain ischemia is a widespread disease worldwide, being one of the main causes of mortality and permanent disability. A portion of the damage that ensues following the ischemic event is caused by unrestrained inflammation, which is mainly orchestrated by exacerbated microglial activity. Hence, developing strategies for modulating microglial inflammation is a major concern nowadays. The endogenous molecule carbon monoxide (CO) has been shown to possess anti-neuroinflammatory properties using in vitro and in vivo approaches. Thus, our objective was to study CO as modulator of microglial activity, in particular in what concerns their communication with neurons, by promoting neuronal viability and limiting inflammatory output of activated microglia. A conditioned media strategy was established with BV2 microglia and SH-SY5Y neurons as cell models. CO-releasing molecule A1 (CORM-A1), a compound that releases CO spontaneously, was used as method of CO delivery to cells. We found that CORM-A1 pre-treatment in BV2 cells yields neuroprotective results, as it limits cell death when SH-SY5Y neurons are challenged with conditioned media from LPS-activated microglia and the pro-oxidant t-BHP (tert-butyl-hydroperoxide). Thus, we assumed carbon monoxide promotes neuroprotection via inhibition of microglial inflammation, displaying a non-cell autonomous role. CORM-A1 pre-treatment limited inflammation by inhibiting BV2 secretion of TNF-α and stimulating IL-10 production. These results reinforce that CO’s anti-inflammatory role confers neuroprotection, as the alterations in these cytokines occur concurrently with the increase in SH-SY5Y viability. Finally, we showed for the first time that carbon monoxide promotes the expression of CD200R1, a microglial receptor involved in neuron-glia communication and modulation of microglia inflammation. Further studies are necessary to clarify this role. Altogether, other than just highlighting CO as an anti-inflammatory and neuroprotective molecule, this work set the foundation for disclosing its involvement in cell-to-cell communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.