821 resultados para Capacitive strain gage
Resumo:
A nonfluorescent low-cost, low-density oligonucleotide array was designed for detecting the whole coronavirus genus after reverse transcription (RT)-PCR. The limit of detection was 15.7 copies/reaction. The clinical detection limit in patients with severe acute respiratory syndrome was 100 copies/sample. In 39 children suffering from coronavirus 229E, NL63, OC43, or HKU1, the sensitivity was equal to that of individual real-time RT-PCRs.
Resumo:
We describe an outbreak among drug users of severe soft-tissue infections caused by a clonal strain of group A streptococcus of M-type 25. Cases (n = 19) in drug users were defined as infections (mainly needle abscesses) due to the outbreak strain. Comparison with controls showed that infected drug users bought drugs more often at a specific place. Drug purchase and use habits may have contributed to this outbreak.
Resumo:
In a rabbit model of meningitis caused by a pneumococcus highly resistant to penicillin (MIC, 4 microg/ml), meropenem, a broad-spectrum carbapenem, was bactericidal (-0.48+/-0.14 deltalog10 cfu/ml h) and slightly superior to ceftriaxone (-0.34+/-0.23 deltalog10 cfu/ml x h) and vancomycin (-0.39+/-0.19 deltalog10 cfu/ml x h). Although the combination of vancomycin with ceftriaxone was significantly more active than ceftriaxone alone (-0.55+/-0.19 deltalog10 cfu/ml x h), only an insignificant gain was observed by the addition of vancomycin to meropenem (-0.55+/-0.28 deltalog10 cfu/ml x h).
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of ampicillin combined with sulbactam in a rabbit model of meningitis due to a beta-lactamase-producing strain of Escherichia coli K-1. Ceftriaxone was used as a comparison drug. The MIC and MBC were 32 and greater than 64 micrograms/ml (ampicillin), greater than 256 and greater than 256 micrograms/ml (sulbactam), 2.0 and 4.0 micrograms/ml (ampicillin-sulbactam [2:1 ratio, ampicillin concentration]) and 0.125 and 0.25 micrograms/ml (ceftriaxone). All antibiotics were given by intravenous bolus injection in a number of dosing regimens. Ampicillin and sulbactam achieved high concentrations in cerebrospinal fluid (CSF) with higher dose regimens, but only moderate bactericidal activity compared with that of ceftriaxone was obtained. CSF bacterial titers were reduced by 0.6 +/- 0.3 log10 CFU/ml/h with the highest ampicillin-sulbactam dose used (500 and 500 mg/kg of body weight, two doses). This was similar to the bactericidal activity achieved by low-dose ceftriaxone (10 mg/kg), while a higher ceftriaxone dose (100 mg/kg) produced a significant increase in bactericidal activity (1.1 +/- 0.4 log10 CFU/ml/h). It appears that ampicillin-sulbactam, despite favorable CSF pharmacokinetics in animals with meningitis, may be of limited value in the treatment of difficult-to-treat beta-lactamase-producing bacteria, against which the combination shows only moderate in vitro activity.
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of piperacillin combined with tazobactam, a novel beta-lactamase inhibitor, in experimental meningitis due to a beta-lactamase-producing strain of K1-positive Escherichia coli. Different doses of piperacillin and tazobactam, as single agents and combined (8:1 ratio; dosage range, 40/5 to 200/25 mg/kg per h), and of ceftriaxone were given to experimentally infected rabbits by intravenous bolus injection followed by a 5-h constant infusion. The mean (+/- standard deviation) rates for penetration into the cerebrospinal fluid of infected animals after coadministration of both drugs were 16.6 +/- 8.4% for piperacillin and 32.5 +/- 12.6% for tazobactam. Compared with either agent alone, combination treatment resulted in significantly better bactericidal activity in the cerebrospinal fluid. The bactericidal activity of piperacillin-tazobactam was dose dependent: cerebrospinal fluid bacterial titers were reduced by 0.37 +/- 0.19 log10 CFU/ml per h with the lowest dose versus 0.96 +/- 0.25 log10 CFU/ml per h with the highest dose (P less than 0.001). At the relatively high doses of 160/20 and 200/25 mg of piperacillin-tazobactam per kg per h, the bactericidal activity of the combination was comparable to that of 10 and 25 mg of ceftriaxone per kg per h, respectively.
Resumo:
ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.
Resumo:
The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.
Resumo:
Since 1991, 6 years after the recommendation of universal childhood triple vaccination against measles, mumps and rubella (M + M + R), Switzerland has been confronted with an increasing number of mumps cases affecting both vaccinated and unvaccinated children. The M + M + R vaccine mainly used in the Swiss population after 1986 contains the highly attenuated Rubini strain of mumps virus. We analysed an outbreak of 102 suspected mumps cases by virus isolation, determination of IgM antibodies to mumps virus in 27 acute phase sera, and verification of vaccination histories. Mumps was confirmed by virus isolation in 88 patients, of whom 72 had previously received the Rubini vaccine strain. IgM antibodies to mumps virus were detected in 24/27 acute phase serum samples. A group of 92 subjects from the same geographic area without signs of mumps virus infection served as controls. IgG antibodies to mumps virus and vaccination status were assessed in these children. The vaccination rate in these controls was 61%, with equal seropositivity for unvaccinated and Rubini-vaccinated subjects. These data support other recent reports which indicate an insufficient protective efficacy of current mumps vaccines.
Resumo:
Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.