789 resultados para Caldecott, Julian
Resumo:
BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.
Resumo:
OBJECTIVE: To study the inter-observer variation related to extraction of continuous and numerical rating scale data from trial reports for use in meta-analyses. DESIGN: Observer agreement study. DATA SOURCES: A random sample of 10 Cochrane reviews that presented a result as a standardised mean difference (SMD), the protocols for the reviews and the trial reports (n=45) were retrieved. DATA EXTRACTION: Five experienced methodologists and five PhD students independently extracted data from the trial reports for calculation of the first SMD result in each review. The observers did not have access to the reviews but to the protocols, where the relevant outcome was highlighted. The agreement was analysed at both trial and meta-analysis level, pairing the observers in all possible ways (45 pairs, yielding 2025 pairs of trials and 450 pairs of meta-analyses). Agreement was defined as SMDs that differed less than 0.1 in their point estimates or confidence intervals. RESULTS: The agreement was 53% at trial level and 31% at meta-analysis level. Including all pairs, the median disagreement was SMD=0.22 (interquartile range 0.07-0.61). The experts agreed somewhat more than the PhD students at trial level (61% v 46%), but not at meta-analysis level. Important reasons for disagreement were differences in selection of time points, scales, control groups, and type of calculations; whether to include a trial in the meta-analysis; and data extraction errors made by the observers. In 14 out of the 100 SMDs calculated at the meta-analysis level, individual observers reached different conclusions than the originally published review. CONCLUSIONS: Disagreements were common and often larger than the effect of commonly used treatments. Meta-analyses using SMDs are prone to observer variation and should be interpreted with caution. The reliability of meta-analyses might be improved by having more detailed review protocols, more than one observer, and statistical expertise.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
OBJECTIVES: To evaluate the potential improvement of antimicrobial treatment by utilizing a new multiplex polymerase chain reaction (PCR) assay that identifies sepsis-relevant microorganisms in blood. DESIGN: Prospective, observational international multicentered trial. SETTING: University hospitals in Germany (n = 2), Spain (n = 1), and the United States (n = 1), and one Italian tertiary general hospital. PATIENTS: 436 sepsis patients with 467 episodes of antimicrobial treatment. METHODS: Whole blood for PCR and blood culture (BC) analysis was sampled independently for each episode. The potential impact of reporting microorganisms by PCR on adequacy and timeliness of antimicrobial therapy was analyzed. The number of gainable days on early adequate antimicrobial treatment attributable to PCR findings was assessed. MEASUREMENTS AND MAIN RESULTS: Sepsis criteria, days on antimicrobial therapy, antimicrobial substances administered, and microorganisms identified by PCR and BC susceptibility tests. RESULTS: BC diagnosed 117 clinically relevant microorganisms; PCR identified 154. Ninety-nine episodes were BC positive (BC+); 131 episodes were PCR positive (PCR+). Overall, 127.8 days of clinically inadequate empirical antibiotic treatment in the 99 BC+ episodes were observed. Utilization of PCR-aided diagnostics calculates to a potential reduction of 106.5 clinically inadequate treatment days. The ratio of gainable early adequate treatment days to number of PCR tests done is 22.8 days/100 tests overall (confidence interval 15-31) and 36.4 days/100 tests in the intensive care and surgical ward populations (confidence interval 22-51). CONCLUSIONS: Rapid PCR identification of microorganisms may contribute to a reduction of early inadequate antibiotic treatment in sepsis.
Resumo:
PURPOSE: The unfolded protein response is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum. Previous studies suggest that the unfolded protein response is activated in some cancer cell lines and involved in tumor development. The role of the unfolded protein response during leukemogenesis is unknown thus far. EXPERIMENTAL DESIGN: Here, we assessed the induction of key effectors of the unfolded protein response in leukemic cells at diagnosis of 105 acute myeloid leukemia (AML) patients comprising all subtypes. We determined the formation of the spliced variant of the X-box-binding protein 1 (XBP1) mRNA, as well as expression levels of calreticulin, GRP78, and CHOP mRNA. RESULTS: The formation of the spliced variant of XBP1s was detectable in 16.2% (17 of 105) of AML patients. Consistent with activated unfolded protein response, this group also had significantly increased expression of calreticulin, GRP78, and CHOP. AML patients with activated unfolded protein response had lower WBC counts, lactate dehydrogenase levels, and more frequently, secondary AML. The incidence of fms-related tyrosine kinase 3 (FLT3) mutations was significantly lower in patients with activated unfolded protein response. In addition, an association was observed between activated unfolded protein response and deletion of chromosome 7. Finally, the clinical course of AML patients with activated unfolded protein response was more favorable with lower relapse rate (P = 0.0182) and better overall (P = 0.041) and disease-free survival (P = 0.022). CONCLUSIONS: These results suggest that the unfolded protein response is activated in a considerable subset of AML patients. AML patients with activated unfolded protein response present specific clinical characteristics and a more favorable course of the disease.