987 resultados para Calculated from pressure
Resumo:
The method of Gibbs-Duhem integration suggested by Speiser et al. has been modified to derive activities from distribution equilibria. It is shown that, in general, the activities of components in melts with a common anion can be calculated, without using their standard Gibbs energies of formation, from eqUilibrium ratios and the knowledge of activities in the metal phase. Moreover, if systems are so chosen that the concentration of one element in the metal phase lies in the Henry's law region (less than 1 %), information on activities in the metal phase is not required. Conversely, activities of elements in an alloy can be readily calculated from equilibrium distribution ratios alone, if the salt phase in equilibrium contains very small amounts of one element. Application of the method is illustrated using distribution ratios from the literature on AgCI-CuCI, AgBr-CuBr, and CuDo.5 -PbD systems. The results indicate that covalent bonding and van der Waals repulsive interactions in certain types of fused salt melts can significantly affect the thermodynamic properties of mixing.
Resumo:
Conductivity measurements as a function of temperature and partial pressures of SOs, SO2, and O2, and transference experiments indicate that the transport number of Na + ions is unity in Na2SO4-I. A concentration cell based on this electrolyte Pt, O2' + SO2' + SOs'/Na2SO4-I/SOa" + SO~" + O~", Pt produces emf's that are in agreement with those calculated from the Nernst equation when equilibrium is assumed between the gas species at the electrodes. The cell can be used for monitoring the SO#SOs pollution in air, and in combination with an oxygen probe can be used for the determination of SO=/SOs concentrations in coal combustion reactors, for the evaluation of the partial pressure of $2 in coal gasification systems, and for emission control in nonferrous smelters using sulfide ores. The probe is similar to that developed recently by Gauthier et aL (4, 5) using K=SO4 as the electrolyte, but can operate at higher pressures of SO3. Because of the greater polarizing power of the Na+ ion compared to the K + ion, Na2S207 is less stable and can be formed only at a considerably higher pressure of S03 than that required for K~20~.
Resumo:
The emf of the cell, Pt, Ar + O2 + SO2 + SO3/Na2SO4-I/Fe2O2 + Fe2(SO4)3, Pt, has been measured in the temperature range 800 to 1000 K, using a gas mixture of known input composition as the reference electrode. The equilibrium composition of the reference gas at the measuring temperatures was computed using the thermodynamic data on the gaseous species reported in the literature. A mixture of ferric oxide and sulfate was kept in a closed system to ensure establishment of equilibrium partial pressure at the electrode. The cell was designed to avoid physical contact between Fe2(SO4)3 and Na2SO4 electrolyte. Uncertainties arising from the formation of sulfate solid solution were thus eliminated. The Gibbs’ energy of formation of ferric sulfate calculated from the emf is discussed in comparison with data reported in the literature. There is no evidence for the formation of oxysulfates in the Fe-S-0 system. Based on the results obtained in the present study for Fe2(SO4)3 and literature data for other phases, chemical potential diagrams have been constructed for the Fe-S-O system at 900 and 1100 K.
Resumo:
On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.
Resumo:
he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
LiNi0.8Co0.2O2 cathode material for lithium ion batteries is synthesized by reaction under autogenic pressure at elevated temperature (RAPET) method. The simple synthesis procedure is time and energy saving, and thus is promising for commercial application. The structure and stability of the material have been characterized by means of XRD and TG-DTA. The electrochemical properties of the LiNi0.8Co0.2O2 cathode are investigated in 2 M Li2SO4 aqueous electrolyte and they are compared to that in an organic electrolyte. A battery cell consisting of LiNi0.8Co0.2O2 as cathode in 2 M Li2SO4 solution is constructed in combination with LiTi2 (PO4)(3) as anode. The cell retained almost constant discharge capacity over hundred cycles. The electrochemical impedance spectral ( EIS) studies in aqueous and nonaqueous electrolytes revealed that the mechanism of lithium ion intercalation and deintercalation processes in LiNi0.8Co0.2O2 electrode follow almost similar mechanism in both aqueous and nonaqueous electrolytes. The chemical diffusion coefficient was calculated from slow scan rate cyclic voltammetry and EIS. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.075205jes] All rights reserved.
Resumo:
In this paper we report the quantitative oxygen quenching effect on laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone at low pressures (approximate to 700torr) with oxygen partial pressures up to 450torr. Nitrogen was used as a bath gas in which these molecular tracers were added in different quantities according to their vapor pressure at room temperature. These tracers were excited by using a frequency-quadrupled, Q-switched, Nd:YAG laser (266nm). Stern-Volmer plots were found to be linear for all the tracers, suggesting that quenching is collisional in nature. Stern-Volmer coefficients (k(sv)) and quenching rate constants (k(q)) were calculated from Stern-Volmer plots. The effects of oxygen on the laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone were compared with each other. Further, the Smoluchowski theory was used to calculate the quenching parameters and compared with the experimental results.
Resumo:
Balanced white light emitting systems are important for applications in electronic devices. Of all types of white light emitting materials, gels have the special advantage of easy processability. Here we report two white light emitting gels, which are based on lanthanide cholate self-assembly. The components are commercially available and the gels are prepared by simply sonicating their aqueous solutions (1-3min), unlike any other known white light emitting systems. Their CIE co-ordinates, calculated from the luminescence data, fall in the white light range with a correlated color temperature of ca. 5600 K.
Resumo:
The viscometer presented in this paper is suit-able for measuring the viscosity of liquids in micro-litre quantities. It consists of a micro-flow experimental system with a thermostat. Using the measurements of the flow rates and pressure drops of a liquid passing through a microtube, the liquid's viscosity can be calculated from on Hagen-Poiseuille theory. After calibration, the viscometer was used to measure viscosities of deionized water and ethyl alcohol at temperatures ranging from 0 to 40 "C. For both test liquids, the relative deviation of the measured values from those quoted in the literature (obtained using other viscometers) was less than 2.6o/o. The relative uncertainty of the experimental system was reduced to +-l.8% using the relative measuring method. Due to the micro-scale of the test section, only a micro-litre quantity of liquid is needed for a test, this is a potential advantage for measurement of bio-liquid viscosities.
Resumo:
ENGLISH: The average linear growth rate of skipjack in the eastern Pacific is less than 1 mm per day except for fish 375 to 424 mm in length at release. The growth rate shows a decrease with increasing length and increasing time at liberty. The growth rate of fish in the length range of about 43 to 57 cm is apparently more rapid in the eastern Pacific than in the western Pacific. Dsing data for the northeastern and southeastern Pacific combined, K and ~ were estimated to be 0.658 (on an annual basis) and 885 mm, respectively, by the ungrouped method and 0.829 and 846 mm, respectively, by the grouped method. Sensitivity analyses have shown however, that the estimates of these parameters are poorly determined by the sum of squares method used to derive them. Estimates of K and ~ for the eastern Pacific tend to be lower and higher, respectively, than those for the western Pacific. The average linear growth rate of yellowfin in the eastern Pacific is a little less than 1 mm per day for fish between about 25 and 100 cm in length at release. The growth appears to be most rapid in Area 2 (Revillagigedo Islands) and slowest in Areas 1 (Baja California), 5 (Central America- Colombia), and 6 (Ecuador-Peru). There is considerable variation in the growth rates of individual fish. The growth does not show a decrease with increasing length or increasing time at liberty so realistic estimates of the parameters of the von Bertalanffy or other similar equations cannot be calculated from these data. If realistic estimates of these parameters are to be secured larger fish must be tagged and released or many more long-term returns from fish to about 100 cm in length at release must be obtained. The growth patterns for the eastern Pacific, central Pacific and eastern Atlantic found by most other investigators differ from one another and from those found in the present study. Some of these differences may be real and others may be due to deficiencies in the data or the methods of analysis. Estimates obtained from tagging data are believed to be realistic provided the tags do not inhibit the growth of the fish. It appears that the growth rates of single- and double-tagged fish are the same; this indicates, though not unequivocally, that the tags do not inhibit the growth. SPANISH: La tasa media de crecimiento lineal del barrilete en el Pacífico oriental es inferior a lmm/día, excepto en el caso de peces de entre 375y 424mm de longitud de liberación. La tasa de crecimiento disminuye a medida que aumenta la longitud y el tiempo en libertad. La tasa de crecimiento de peces de entre unos 43 y 57 cm de longitud parece ser mayor en el Pacífico oriental que en el occidental. A partir de datos del Pacífico nororiental y suroriental combinados, se estimaron K y loo en 0.658 (anual) y 885mm, respectivamente, usando el método no agrupado, y 0.829 y 846mm, respectivamente, usando el método agrupado. Sin embargo, los análisis de sensitividad han demostrado que el método de suma de cuadrados utilizado para derivar las estimaciones de estos parámetros las determina con poca precisión. Las estimaciones de K y loo para el Pacífico oriental suelen ser inferiores y superiores, respectivamente, a los del Pacífico occidental. La tasa media de crecimiento lineal del aleta amarilla en el Pacífico oriental es ligeramente inferior a lmm/día para los peces de entre unos 25y 100cmde longitud de liberación. El crecimiento parece ser más rápido en el Area 2(Islas Revillagigedo),y más lento en las Areas 1(Baja California), 5 (Centroamérica-Colombia), y 6 (Ecuador-Perú). Las tasas de crecimiento de peces individuales varían considerablemente. El crecimiento no muestra una disminuciónconun aumento en la longitud o en el tiempo en libertad, y por consecuencia no se se pueden calcular estimaciones realistas de los parámetros de la ecuación de von Bertalanffy u otras ecuaciones similares a partir de estos datos. Para obtener estimaciones realistas de estos parámetros sería necesario marcar peces mayores u obtener muchas más devoluciones a largo plazo de marcas de peces de unos 100cm de longitud de liberación. Los patrones de crecimiento correspondientes al Pacífico oriental, Pacífico central, y Atlántico oriental descubiertos por la mayoría de los investigadores son diferentes entre síy también de los del presente estudio. Es posibleque algunas de estas diferencias sean verdaderas, mientras que otras se deban a faltas en los datos on en los métodos analíticos utilizados. Se considera que las estimaciones obtenidas a partir de los datos de marcado son realistas, suponiendo siempre que las marcas no impidan el crecimiento de los peces. Parece ser que las tasas de crecimiento de peces con una marca y con dos son idénticas, lo cual indica, aunque sin certeza total, que las marcas no ejercen tal efecto. (PDF contains 76 pages.)
Resumo:
Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.
The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.
INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.
Resumo:
In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.
Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.
Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.
Resumo:
Part I
Regression analyses are performed on in vivo hemodialysis data for the transfer of creatinine, urea, uric acid and inorganic phosphate to determine the effects of variations in certain parameters on the efficiency of dialysis with a Kiil dialyzer. In calculating the mass transfer rates across the membrane, the effects of cell-plasma mass transfer kinetics are considered. The concept of the effective permeability coefficient for the red cell membrane is introduced to account for these effects. A discussion of the consequences of neglecting cell-plasma kinetics, as has been done to date in the literature, is presented.
A physical model for the Kiil dialyzer is presented in order to calculate the available membrane area for mass transfer, the linear blood and dialysate velocities, and other variables. The equations used to determine the independent variables of the regression analyses are presented. The potential dependent variables in the analyses are discussed.
Regression analyses were carried out considering overall mass-transfer coefficients, dialysances, relative dialysances, and relative permeabilities for each substance as the dependent variables. The independent variables were linear blood velocity, linear dialysate velocity, the pressure difference across the membrane, the elapsed time of dialysis, the blood hematocrit, and the arterial plasma concentrations of each substance transferred. The resulting correlations are tabulated, presented graphically, and discussed. The implications of these correlations are discussed from the viewpoint of a research investigator and from the viewpoint of patient treatment.
Recommendations for further experimental work are presented.
Part II
The interfacial structure of concurrent air-water flow in a two-inch diameter horizontal tube in the wavy flow regime has been measured using resistance wave gages. The median water depth, r.m.s. wave height, wave frequency, extrema frequency, and wave velocity have been measured as functions of air and water flow rates. Reynolds numbers, Froude numbers, Weber numbers, and bulk velocities for each phase may be calculated from these measurements. No theory for wave formation and propagation available in the literature was sufficient to describe these results.
The water surface level distribution generally is not adequately represented as a stationary Gaussian process. Five types of deviation from the Gaussian process function were noted in this work. The presence of the tube walls and the relatively large interfacial shear stresses precludes the use of simple statistical analyses to describe the interfacial structure. A detailed study of the behavior of individual fluid elements near the interface may be necessary to describe adequately wavy two-phase flow in systems similar to the one used in this work.
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.