944 resultados para Calculated, eddy covariance method
Resumo:
In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.
Resumo:
This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.
Resumo:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
Resumo:
Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
A phantom that can be used for mapping geometric distortion in magnetic resonance imaging (MRI) is described. This phantom provides an array of densely distributed control points in three-dimensional (3D) space. These points form the basis of a comprehensive measurement method to correct for geometric distortion in MR images arising principally from gradient field non-linearity and magnet field inhomogeneity. The phantom was designed based on the concept that a point in space can be defined using three orthogonal planes. This novel design approach allows for as many control points as desired. Employing this novel design, a highly accurate method has been developed that enables the positions of the control points to be measured to sub-voxel accuracy. The phantom described in this paper was constructed to fit into a body coil of a MRI scanner, (external dimensions of the phantom were: 310 mm x 310 mm x 310 mm), and it contained 10,830 control points. With this phantom, the mean errors in the measured coordinates of the control points were on the order of 0.1 mm or less, which were less than one tenth of the voxel's dimensions of the phantom image. The calculated three-dimensional distortion map, i.e., the differences between the image positions and true positions of the control points, can then be used to compensate for geometric distortion for a full image restoration. It is anticipated that this novel method will have an impact on the applicability of MRI in both clinical and research settings. especially in areas where geometric accuracy is highly required, such as in MR neuro-imaging. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
Background and Purpose. A new method of dynamometry has been developed to measure the performance of the craniocervical (CC) flexor muscles by recording the torque that these muscles exert on the cranium around the CC junction. This report describes the method, the specifications of the instrument, and the preliminary reliability data. Subjects and Methods. For the reliability study, 20 subjects (12 subjects with a history of neck pain, 8 subjects without a history of neck pain) performed, on 2 occasions, maximal voluntary isometric contraction (MVIC) tests of CC flexion in 3 positions within the range of CC flexion and submaximal sustained tests (20% and 50% of MVIC) in the middle range of CC flexion (craniocervical neutral position). Reliability coefficients were calculated to establish the test-retest reliability of the measurements. Results. The method demonstrated good reliability over 2 sessions in the measurement of MVIC (intraclass correlation coefficient [ICC] =.79-.93, SEM=0.6-1.4 N-m) and in the measurement of steadiness (standard deviation of torque amplitude) of a sustained contraction at 20% of NMC (ICC=.74-.80, SEM=0.01 N-m), but not at 50% of MVIC (ICC=.07-.76, SEM=0.04-0.13 N-m). Discussion and Conclusion. The new dynamometry method appears to have potential clinical application in the measurement of craniocervical flexor muscle performance.
Resumo:
Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.
Resumo:
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.
Resumo:
This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.
Resumo:
Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.
Resumo:
A novel dissolution method was developed, suitable for powder mixtures, based on the USP basket apparatus. The baskets were modified such that the powder mixtures were retained within the baskets and not dispersed, a potential difficulty that may arise when using conventional USP basket and paddle apparatus. The advantages of this method were that the components of the mixtures were maintained in close proximity, maximizing any drug:excipient interaction and leading to more linear dissolution profiles. Two weakly acidic model drugs, ibuprofen and acetaminophen, and a selection of pharmaceutical excipients, including potential dissolution-enhancing alkalizing agents, were chosen for investigation. Dissolution profiles were obtained for simple physical mixtures. The f1 fit factor values, calculated using pure drug as the reference material, demonstrated a trend in line with expectations, with several dissolution enhancers apparent for both drugs. Also, the dissolution rates were linear over substantial parts of the profiles. For both drugs, a rank order comparison between the f1 fit factor and calculated dissolution rate, obtained from the linear section of the dissolution profile, demonstrated a correlation using a significance level of P=0.05. The method was proven to be suitable for discriminating between the effects of excipients on the dissolution of the model drugs. The method design produced dissolution profiles where the dissolution rate was linear for a substantial time, allowing determination of the dissolution rate without mathematical transformation of the data. This method may be suitable as a preliminary excipient-screening tool in the drug formulation development process.