978 resultados para Ca-2 Stores
Resumo:
Maternal-fetal calcium (Ca(2+)) transport is crucial for fetal Ca(2+) homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca(2+) channel in maternal-fetal Ca(2+) transport was investigated using Trpv6 knockout mice. The Ca(2+) concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca(2+) ((45)Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal-fetal Ca(2+) transport in mice. These expression sites were co-localized with calbindin D(9K) in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal-fetal Ca(2+) transport. We propose that TRPV6 functions as a Ca(2+) entry pathway, which is critical for fetal Ca(2+) homeostasis.
Resumo:
The rate-limiting step of dietary calcium absorption in the intestine requires the brush border calcium entry channel TRPV6. The TRPV6 gene was completely sequenced in 170 renal calcium stone patients. The frequency of an ancestral TRPV6 haplotype consisting of three non-synonymous polymorphisms (C157R, M378V, M681T) was significantly higher (P = 0.039) in calcium stone formers (8.4%; derived = 502, ancestral = 46) compared to non-stone-forming individuals (5.4%; derived = 645, ancestral = 37). Mineral metabolism was investigated on four different calcium regimens: (i) free-choice diet, (ii) low calcium diet, (iii) fasting and (iv) after a 1 g oral calcium load. When patients homozygous for the derived haplotype were compared with heterozygous patients, no differences were found with respect to the plasma concentrations of 1,25-vitamin D, PTH and calcium, and the urinary excretion of calcium. In one stone-forming patient, the ancestral haplotype was found to be homozygous. This patient had absorptive hypercalciuria. We therefore expressed the ancestral protein (157R+378V+681T) in Xenopus oocytes and found a significantly enhanced calcium permeability when tested by a (45)Ca(2+) uptake assay (7.11 +/- 1.93 versus 3.61 +/- 1.01 pmol/min/oocyte for ancestral versus derived haplotype, P < 0.01). These results suggest that the ancestral gain-of-function haplotype in TRPV6 plays a role in calcium stone formation in certain forms of absorptive hypercalciuria.
Resumo:
Upon its genesis during apoptosis, ceramide promotes gross reorganization of the plasma membrane structure involving clustering of signalling molecules and an amplification of vesicle formation, fusion and trafficking. The annexins are a family of proteins, which in the presence of Ca(2+), bind to membranes containing negatively charged phospholipids. Here, we show that ceramide increases affinity of annexin A1-membrane interaction. In the physiologically relevant range of Ca(2+) concentrations, this leads to an increase in the Ca(2+)sensitivity of annexin A1-membrane interaction. In fixed cells, using a ceramide-specific antibody, we establish a direct interaction of annexin A1 with areas of the plasma membrane enriched in ceramide (ceramide platforms). In living cells, the intracellular dynamics of annexin A1 match those of plasmalemmal ceramide. Among proteins of the annexin family, the interaction with ceramide platforms is restricted to annexin A1 and is conveyed by its unique N-terminal domain. We demonstrate that intracellular Ca(2+)overload occurring at the conditions of cellular stress induces ceramide production. Using fluorescently tagged annexin A1 as a reporter for ceramide platforms and annexin A6 as a non-selective membrane marker, we visualize ceramide platforms for the first time in living cells and provide evidence for a ceramide-driven segregation and internalization of membrane-associated proteins.
Resumo:
Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.
Resumo:
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.
Resumo:
The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.
Resumo:
Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.
Resumo:
The annexins are a family of Ca(2+)- and phospholipid-binding proteins, which interact with membranes upon increase of [Ca(2+)](i) or during cytoplasmic acidification. The transient nature of the membrane binding of annexins complicates the study of their influence on intracellular processes. To address the function of annexins at the plasma membrane (PM), we fused fluorescent protein-tagged annexins A6, A1, and A2 with H- and K-Ras membrane anchors. Stable PM localization of membrane-anchored annexin A6 significantly decreased the store-operated Ca(2+) entry (SOCE), but did not influence the rates of Ca(2+) extrusion. This attenuation was specific for annexin A6 because PM-anchored annexins A1 and A2 did not alter SOCE. Membrane association of annexin A6 was necessary for a measurable decrease of SOCE, because cytoplasmic annexin A6 had no effect on Ca(2+) entry as long as [Ca(2+)](i) was below the threshold of annexin A6-membrane translocation. However, when [Ca(2+)](i) reached the levels necessary for the Ca(2+)-dependent PM association of ectopically expressed wild-type annexin A6, SOCE was also inhibited. Conversely, knockdown of the endogenous annexin A6 in HEK293 cells resulted in an elevated Ca(2+) entry. Constitutive PM localization of annexin A6 caused a rearrangement and accumulation of F-actin at the PM, indicating a stabilized cortical cytoskeleton. Consistent with these findings, disruption of the actin cytoskeleton using latrunculin A abolished the inhibitory effect of PM-anchored annexin A6 on SOCE. In agreement with the inhibitory effect of annexin A6 on SOCE, constitutive PM localization of annexin A6 inhibited cell proliferation. Taken together, our results implicate annexin A6 in the actin-dependent regulation of Ca(2+) entry, with consequences for the rates of cell proliferation.
Resumo:
CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.
Resumo:
Differential expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban (PLB) has been shown in heart failure and atrial arrhythmias. We investigated the influence of volume overload and age on their expression in pediatric atrial myocardium. Right atrial specimens from 18 children with volume overloaded right atrium (VO) and 12 patients without overload were studied. Each group was further divided into patients less than and older than 12 months of age. Only in the younger patients SERCA2a was significantly reduced in the VO group. In younger patients PLB mRNA level tended to be lower in VO. The PLB:SERCA protein ratio was significantly reduced in the VO group. Age itself did not influence the SERCA2a and PLB expression, if the hemodynamic overload was not taken into account. This study is the first to show a combined influence of volume overload and age on atrial SERCA2a expression.
Resumo:
Recently, a muscular disorder defined as "congenital pseudomyotonia" was described in Chianina cattle, one of the most important Italian cattle breeds for quality meat and leather. The clinical phenotype of this disease is characterized by an exercise-induced muscle contracture that prevents animals from performing muscular activities. On the basis of clinical symptoms, Chianina pseudomyotonia appeared related to human Brody's disease, a rare inherited disorder of skeletal muscle function that results from a sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) deficiency caused by a defect in the ATP2A1 gene that encodes SERCA1. SERCA1 is involved in transporting calcium from the cytosol to the lumen of the sarcoplasmic reticulum. Recently, we identified the genetic defect underlying Chianina cattle pseudomyotonia. A missense mutation in exon 6 of the ATP2A1 gene, leading to an R164H substitution in the SERCA1 protein, was found. In this study, we provide biochemical evidence for a selective deficiency in SERCA1 protein levels in sarcoplasmic reticulum membranes from affected muscles, although mRNA levels are unaffected. The reduction of SERCA1 levels accounts for the reduced Ca(2+)-ATPase activity without any significant change in Ca(2+)-dependency. The loss of SERCA1 is not compensated for by the expression of the SERCA2 isoform. We believe that Chianina cattle pseudomyotonia might, therefore, be the true counterpart of human Brody's disease, and that bovine species might be used as a suitable animal model.
Resumo:
Skeletal muscle complaints are a common consequence of cholesterol-lowering therapy. Transverse tubular (T-tubular) vacuolations occur in patients having statin-associated myopathy and, to a lesser extent, in statin-treated patients without myopathy. We have investigated quantitative changes in T-tubular morphology and looked for early indicators of T-tubular membrane repair in skeletal muscle biopsy samples from patients receiving cholesterol-lowering therapy who do not have myopathic side effects. Gene expression and protein levels of incipient membrane repair proteins were monitored in patients who tolerated statin treatment without myopathy and in statin-naive subjects. In addition, morphometry of the T-tubular system was performed. Only the gene expression for annexin A1 was up-regulated, whereas the expression of other repair genes remained unchanged. However, annexin A1 and dysferlin protein levels were significantly increased. In statin-treated patients, the volume fraction of the T-tubular system was significantly increased, but the volume fraction of the sarcoplasmic reticulum remained unchanged. A complex surface structure in combination with high mechanical loads makes skeletal muscle plasma membranes susceptible to injury. Ca(2+)-dependent membrane repair proteins such as dysferlin and annexin A1 are deployed at T-tubular sites. The up-regulation of annexin A1 gene expression and protein points to this protein as a biomarker for T-tubular repair.
Resumo:
The tight regulation of granulocyte chemotaxis is crucial for initiation and resolution of inflammation. Here, we show that DAPK2, a Ca(2+)/CaM-sensitive serine/threonine kinase known to modulate cell death in various cell types, is a novel regulator of migration in granulocytes. We demonstrate that human neutrophils and eosinophils express DAPK2 but unlike other leukocytes, no DAPK1 or DAPK3 protein. When DAPK activities were blocked by inhibitors, we found that neither granulocyte lifespan nor phagocytosis was affected. However, such pharmacological inactivation of DAPK activity abolished motility of granulocytes in response to intermediary but not end-target chemoattractants ex vivo. The defect in chemotaxis in DAPK2-inactive granulocytes is likely a result of reduced polarization of the cells, mediated by a lack of MLC phosphorylation, resulting in radial F-actin and pseudopod formation. As neutrophils treated with DAPKi also showed reduced recruitment to the site of inflammation in a mouse peritonitis model, DAPK2 may be a novel target for anti-inflammatory therapies.
Resumo:
BACKGROUND/AIMS ATP-gated P2X4 purinergic receptors (P2X4Rs) are cation channels with important roles in diverse cell types. To date, lack of specific inhibitors has hampered investigations on P2X4Rs. Recently, the benzodiazepine derivative, 5-BDBD has been proposed to selectively inhibit P2X4Rs. However, limited evidences are currently available on its inhibitory properties. Thus, we aimed to characterize the inhibitory effects of 5-BDBD on recombinant human P2X4Rs. METHODS We investigated ATP-induced intracellular Ca(2+) signals and whole cell ion currents in HEK 293 cells that were either transiently or stably transfected with hP2X4Rs. RESULTS Our data show that ATP (< 1 μM) stimulates P2X4R-mediated Ca(2+) influx while endogenously expressed P2Y receptors are not activated to any significant extent. Both 5-BDBD and TNP-ATP inhibit ATP-induced Ca(2+) signals and inward ion currents in a concentration-dependent manner. Application of two different concentrations of 5-BDBD causes a rightward shift in ATP dose-response curve. Since the magnitude of maximal stimulation does not change, these data suggest that 5-BDBD may competitively inhibit the P2X4Rs. CONCLUSIONS Our results demonstrate that application of submicromolar ATP concentrations allows reliable assessment of recombinant P2XR functions in HEK 293 cells. Furthermore, 5-BDBD and TNP-ATP have similar inhibitory potencies on the P2X4Rs although their mechanisms of actions are different.
Resumo:
Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.