938 resultados para CRACK PROPAGATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the wave pattern characteristics of shock-induced two-phase nozzle Hows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue testing was conducted using a kind of triangular isostress specimen to obtain the short-fatigue-crack behaviour of a weld low-carbon steel. The experimental results show that short cracks continuously initiate at slip bands within ferrite grain domains and the crack number per unit area gradually increases with increasing number of fatigue cycles. The dispersed short cracks possess an orientation preference, which is associated with the crystalline orientation of the relevant slip system. Based on the observed collective characteristics, computer modelling was carried out to simulate the evolution process of initiation, propagation and coalescence of short cracks. The simulation provides progressive displays which imitate the appearance of experimental observations. The results of simulation indicate that the crack path possesses a stable value of fractal dimension whereas the critical value of percolation covers a wide datum band, suggesting that the collective evolution process of short cracks is sensitive to the pattern of crack site distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the dynamic governing equation of propagating buckle on a beam on a nonlinear elastic foundation, this paper deals with an important problem of buckle arrest by combining the FEM with a time integration technique. A new conclusion completely different from that by the quasi-static analysis about the buckle arrestor design is drawn. This shows that the inertia of the beam cannot be ignored in the analysis under consideration, especially when the buckle propagation is suddenly stopped by the arrestors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general theory of fracture criteria for mixed dislocation emission and cleavage processes is developed based on Ohr's model. Complicated cases involving mixed-mode loading are considered. Explicit formulae are proposed for the critical condition of crack cleavage propagation after a number of dislocation emissions. The effects of crystal orientation, crack geometry and load phase angle on the apparent critical energy release rates and the total number of the emitted dislocations at the initiation of cleavage are analysed in detail. In order to evaluate the effects of nonlinear interaction between the slip displacement and the normal separation, an analysis of fracture criteria for combined dislocation emission and cleavage is presented on the basis of the Peierls framework. The calculation clearly shows that the nonlinear theory gives slightly high values of the critical apparent energy release rate G(c) for the same load phase angle. The total number N of the emitted dislocations at the onset of cleavage given by nonlinear theory is larger than that of linear theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a dislocation array emitted from a crack tip under mode II loading with asymmetric tilt grain boundaries (GBs) is analysed by the molecular dynamics method. The GBs can generally be described by planar and linear matching zones and unmatching zones. All GBs are observed to emit dislocations. The GBs migrated easily due to their planar and linear matching structure and asymmetrical type. The diffusion induced by stress concentration is found to promote the GB migration. The transmissions of dislocations are either along the matched plane or along another plane depending on tilt angle theta. Alternate processes of stress concentration and stress relaxation take place ahead of the pileup. The stress concentration can be released either by transmission of dislocations, by atom diffusion along GBs, or by migration of GBs by formation of twinning bands. The simulated results also unequivocally demonstrate two processes, i.e. asymmetrical GBs evolving into symmetrical ones and unmatching zones evolving into matching ones during the loading process.