771 resultados para CONFINEMENT
Resumo:
REASONS FOR PERFORMING STUDY: Proximal diffusion of local anaesthetic solution after perineural anaesthesia may lead to the desensitisation of structures other than those intended. However, there is no evidence-based study demonstrating the potential distribution and diffusion of local anaesthetic solution after perineural analgesia in the distal limb. OBJECTIVE: To document the potential diffusion of local anaesthetic solution using a radiopaque contrast model and to evaluate the influence of walking compared with confinement in a stable after injection. METHODS: Radiopaque contrast medium was injected subcutaneously over one palmar nerve at the base of the proximal sesamoid bones in 6 nonlame mature horses. Horses were assigned randomly to stand still or walk after injection. Radiographs were obtained 0, 5, 10, 15, 20 and 30 min after injection and were analysed to determine the distribution and diffusion of the contrast medium. RESULTS: In 89% of injections an elongated pattern of the contrast medium was observed suggesting distribution along the neurovascular bundle. After 49% of injections a fine radiopaque line extended proximally from the contrast 'patch', and in 25% of injections a line extended distally. There was significant proximal and distal diffusion with time when sequential radiographs of each limb were compared. The greatest diffusion occurred in the first 10 min. Walking did not significantly influence the extent of either proximal or distal diffusion. CONCLUSIONS AND POTENTIAL RELEVANCE: Significant proximal diffusion occurs in the first 10 min after perineural injection in the distal aspect of the limb and should be considered when interpreting nerve blocks. Distribution of local anaesthetic solution outside the fascia surrounding the neurovascular bundle or in lymphatic vessels may explain delayed or decreased effects.
Resumo:
We obtain a determination of the strong coupling as in quantum chromodynamics, by comparing perturbative calculations for the short-distance part of the static energy with lattice computations. Our result reads as (1.5GeV) = 0.326±0.019, and when evolved to the scale MZ (the Z-boson mass) it corresponds to as (MZ) = 0.1156+0.0021 −0.0022.
Resumo:
This note is based on our recent results on QCD with varying number of flavors of fundamental fermions. Topics include unusual, strong dynamics in the preconformal, confining phase, the physics of the conformal window and the role of ab-initio lattice simulations in establishing our current knowledge of the phases of many flavor QCD.
Resumo:
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Resumo:
bstract With its smaller size, well-known boundary conditions, and the availability of detailed bathymetric data, Lake Geneva’s subaquatic canyon in the Rhone Delta is an excellent analogue to understand sedimentary pro- cesses in deep-water submarine channels. A multidisciplinary research effort was undertaken to unravel the sediment dynamics in the active canyon. This approach included innovative coring using the Russian MIR sub- mersibles, in situ geotechnical tests, and geophysical, sedimentological, geochemical and radiometric analysis techniques. The canyon floor/levee complex is character- ized by a classic turbiditic system with frequent spillover events. Sedimentary evolution in the active canyon is controlled by a complex interplay between erosion and sedimentation processes. In situ profiling of sediment strength in the upper layer was tested using a dynamic penetrometer and suggests that erosion is the governing mechanism in the proximal canyon floor while sedimen- tation dominates in the levee structure. Sedimentation rates progressively decrease down-channel along the levee structure, with accumulation exceeding 2.6 cm/year in the proximal levee. A decrease in the frequency of turbidites upwards along the canyon wall suggests a progressive confinement of the flow through time. The multi-proxy methodology has also enabled a qualitative slope-stability assessment in the levee structure. The rapid sediment loading, slope undercutting and over-steepening, and increased pore pressure due to high methane concentrations hint at a potential instability of the proximal levees. Fur- thermore, discrete sandy intervals show very high methane concentrations and low shear strength and thus could cor- respond to potentially weak layers prone to scarp failures.
Resumo:
It is a long-standing dream to “simulate” cosmology in laboratory through heavy ion collision experiments. Although the QCD epoch itself may not leave major cosmological signatures, theoretical methods developed and tested in the context of heavy ion collision experiments could indeed find applications at other energy scales. Here recent progress in this spirit is reviewed.
Resumo:
In the recently proposed framework of hard pion chiral perturbation theory, the leading chiral logarithms are predicted to factorize with respect to the energy dependence in the chiral limit. We have scrutinized this assumption in the case of vector and scalar pion form factors FV;S(s) by means of standard chiral perturbation theory and dispersion relations. We show that this factorization property is valid for the elastic contribution to the dispersion integrals for FV;S(s) but it is violated starting at three loops when the inelastic four-pion contributions arise.
Resumo:
Palestinians living in the West Bank, a territory occupied by the State of Israel according to International Law, face deprived access to land and a limited ability to move freely which pertains to the presence of Israeli settlements and other infrastructure (closures, restricted or forbidden roads, etc.). This confinement has significant impacts on their economic and social livelihoods, and it is even worsening with the on-going construction of a 709 km long Barrier which mainly runs inside the West Bank. With regard to this situation, there is a clear need to strengthen the capacity of civil society and its representatives to apply sound research processes as a basis for improved advocacy for Palestinian human rights. Monitoring processes and tools are needed to assess the impacts of the Palestinians’ confinement, particularly in relation to the Barrier’s construction. Reliable data has also to be collected, managed, and above all, shared. These challenges have been addressed within the Academic Cooperation Palestine Project (ACPP) that brings together academic partners from the occupied Palestinian territory (oPt) West Bank (WB), and Switzerland as well as other international academic institutions and Palestinian governmental and non-governmental agencies. ACPP started in early 2011 and is designed as a large cooperation networking platform involving researchers, students, public servants and experts from the oPt WB. A large set of actions have already been developed during the first year of the project, including courses, training, and research actions. First relevant results and impacts of the different actions are presented in this paper. Taken as a whole, the project produces valuable results for all partners: useful advocacy material for the Palestinian partners, and a unique “real-scale laboratory” where investigations are jointly conducted to develop novel confinement and change indicators.
Resumo:
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.
Resumo:
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Resumo:
Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.