809 resultados para COMPUTATIONAL NEURAL-NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realistic and realtime computational simulation of soft biological organs (e.g., liver, kidney) is necessary when one tries to build a quality surgical simulator that can simulate surgical procedures involving these organs. Since the realistic simulation of these soft biological organs should account for both nonlinear material behavior and large deformation, achieving realistic simulations in realtime using continuum mechanics based numerical techniques necessitates the use of a supercomputer or a high end computer cluster which are costly. Hence there is a need to employ soft computing techniques like Support Vector Machines (SVMs) which can do function approximation, and hence could achieve physically realistic simulations in realtime by making use of just a desktop computer. Present work tries to simulate a pig liver in realtime. Liver is assumed to be homogeneous, isotropic, and hyperelastic. Hyperelastic material constants are taken from the literature. An SVM is employed to achieve realistic simulations in realtime, using just a desktop computer. The code for the SVM is obtained from [1]. The SVM is trained using the dataset generated by performing hyperelastic analyses on the liver geometry, using the commercial finite element software package ANSYS. The methodology followed in the present work closely follows the one followed in [2] except that [2] uses Artificial Neural Networks (ANNs) while the present work uses SVMs to achieve realistic simulations in realtime. Results indicate the speed and accuracy that is obtained by employing the SVM for the targeted realistic and realtime simulation of the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of neural networks can be formulated as the linear-in-the-parameters models. Training such networks can be transformed to a model selection problem where a compact model is selected from all the candidates using subset selection algorithms. Forward selection methods are popular fast subset selection approaches. However, they may only produce suboptimal models and can be trapped into a local minimum. More recently, a two-stage fast recursive algorithm (TSFRA) combining forward selection and backward model refinement has been proposed to improve the compactness and generalization performance of the model. This paper proposes unified two-stage orthogonal least squares methods instead of the fast recursive-based methods. In contrast to the TSFRA, this paper derives a new simplified relationship between the forward and the backward stages to avoid repetitive computations using the inherent orthogonal properties of the least squares methods. Furthermore, a new term exchanging scheme for backward model refinement is introduced to reduce computational demand. Finally, given the error reduction ratio criterion, effective and efficient forward and backward subset selection procedures are proposed. Extensive examples are presented to demonstrate the improved model compactness constructed by the proposed technique in comparison with some popular methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modelling of neural circuits found in the brain. In recent years, much of the focus in neuron modelling has moved to the study of the connectivity of spiking neural networks. Spiking neural networks provide a vehicle to understand from a computational perspective, aspects of the brain’s neural circuitry. This understanding can then be used to tackle some of the historically intractable issues with artificial neurons, such as scalability and lack of variable binding. Current knowledge of feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between excitatory and inhibitory neurons is beginning to shed light on these issues, by improved understanding of the temporal processing capabilities and synchronous behaviour of biological neurons. This research topic aims to amalgamate current research aimed at tackling these phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the deployment of a neural network computing environment on Active Networks. Active Networks are packet-switched computer networks in which packets can contain code fragments that are executed on the intermediate nodes. This feature allows the injection of small pieces of codes to deal with computer network problems directly into the network core, and the adoption of new computing techniques to solve networking problems. The goal of our project is the adoption of a distributed neural network for approaching tasks which are specific of the computer network environment. Dynamically reconfigurable neural networks are spread on an experimental wide area backbone of active nodes (ABone) to show the feasibility of the proposed approach.