831 resultados para COASTAL ECOSYSTEM
Resumo:
Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.
Resumo:
Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their ‘resilience’) is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.
Resumo:
The size and complexity of data sets generated within ecosystem-level programmes merits their capture, curation, storage and analysis, synthesis and visualisation using Big Data approaches. This review looks at previous attempts to organise and analyse such data through the International Biological Programme and draws on the mistakes made and the lessons learned for effective Big Data approaches to current Research Councils United Kingdom (RCUK) ecosystem-level programmes, using Biodiversity and Ecosystem Service Sustainability (BESS) and Environmental Virtual Observatory Pilot (EVOp) as exemplars. The challenges raised by such data are identified, explored and suggestions are made for the two major issues of extending analyses across different spatio-temporal scales and for the effective integration of quantitative and qualitative data.
Resumo:
We investigated the impact of managed retreat on mercury (Hg) biogeochemistry at a site subject to diffuse contamination with Hg. We collected sediment cores from an area of land behind a dyke one year before and one year after it was intentionally breached. These sediments were compared to those of an adjacent mudflat and a salt marsh. The concentration of total mercury (THg) in the sediment doubled after the dyke was breached due to the deposition of fresh sediment that had a smaller particle size, and higher pH. The concentration of methylmercury (MeHg) was 27% lower in the sediments after the dyke was breached. We conclude that coastal flooding during managed retreat of coastal flood defences at this site has not increased the risk of Hg methylation or bioavailability during the first year. As the sediment becomes vegetated, increased activity of Hg-methylating bacteria may accelerate Hg-methylation rate.
Resumo:
The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions-specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.
Resumo:
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.
Resumo:
This paper examines a hydrographic response to the wind‐driven coastal polynya activity over the southeastern Laptev Sea shelf for April–May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR‐X satellite imagery, aerial photography, meteorological data, and SBE‐37 salinity‐temperature‐depth and acoustic Doppler current profiler land‐fast ice edgemoored instruments. When ASAR observed the strongest end‐of‐April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent horizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
This paper proposes a rights-based approach for participatory urban planning for climate change adaptation in urban areas. Participatory urban planning ties climate change adaptation to local development opportunities. Previous discussions suggest that participatory urban planning may help to understand structural inequalities, to gain, even if temporally, institutional support and to deliver a planning process in constant negotiation with local actors. Building upon an action research project which implemented a process of participatory urban planning for climate change in Maputo, Mozambique, this paper reflects upon the practical lessons that emerged from these experiences, in relation to the incorporation of climate change information, the difficulties to secure continued support from local governments and the opportunities for local impacts through the implementation of the proposals emerging from this process.
Resumo:
Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1x1 km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.
Resumo:
Background - Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too-generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level– little consideration is given to the composition of the plant-communities, yet this is what ultimately defines extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more-fully in identifying those plants that promote various services. Scope - Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions – Although research is in its infancy, data is being generated that relates plant traits to specific services; thereby helping identify genotypes that optimise service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified:- a/ provide more than a single benefit (multi-functionality) b/ complement each other in maximising the range of benefits that can be delivered in one location and c/ continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high impact arena for plant science.
Resumo:
A coupled atmospheric-oceanic model was used to investigate whether there is a positive feedback between the coastal upwelling and the sea breeze at Cabo Frio - RJ (Brazil). Two experiments were performed to ascertain the influence of the sea breeze on the coastal upwelling: the first one used the coupled model forced with synoptic NE winds of 8 m s(-1) and the sign of the sea breeze circulation was set by the atmospheric model; the second experiment used only the oceanic model with constant 8 m s(-1) NE winds. Then, to study the influence of the coastal upwelling on the sea breeze, two more experiments were performed: one using a coastal upwelling representative SST initial field and the other one using a constant and homogeneous SST field of 26 degrees C. Finally, two more experiments were conducted to verify the influence of the topography and the spatial distribution of the sea surface temperature on the previous results. The results showed that the sea breeze can intensify the coastal upwelling, but the coastal upwelling does not intensify the sea breeze circulation, suggesting that there is no positive feedback between these two phenomena at Cabo Frio.
Resumo:
An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees S, 42 degrees 08`W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 in s(-1), increases the atmospheric boundary layer in 214 in when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 in. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 in and 5.4 in for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts in Cabo Frio.
Resumo:
This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.
Resumo:
Tropical rainforests are becoming increasingly fragmented and understanding the genetic consequences of fragmentation is crucial for conservation of their flora and fauna. We examined populations of the toad Rhinella ornata, a species endemic to Atlantic Coastal Forest in Brazil, and compared genetic diversity among small and medium forest fragments that were either isolated or connected to large forest areas by corridors. Genetic differentiation, as measured by F(ST), was not related to geographic distance among study sites and the size of the fragments did not significantly alter patterns of genetic connectivity. However, population genetic diversity was positively related to fragment size, thus haplotype diversity was lowest in the smallest fragments, likely due to decreases in population sizes. Spatial analyses of genetic discontinuities among groups of populations showed a higher proportion of barriers to gene flow among small and medium fragments than between populations in continuous forest. Our results underscore that even species with relatively high dispersal capacities may, over time, suffer the negative genetic effects of fragmentation, possibly leading to reduced fitness of population and cases of localized extinction. (C) 2008 Elsevier Ltd. All rights reserved.