973 resultados para CHEMICAL-SHIFT
Resumo:
1,2-Enedioic systems, being sterically perturbed from planarity do not show the effect of the extended conjugation expected of a (formal) trienic entity. In the absence of a model which approximates to a uniplanar situation, the strategy of replacing an ester group in the enedioates by a cyano (for which less stringent steric demand may be presumed) and noting the correction concomitant to this replacement was adopted to arrive at a notional figure for the position of maximal absorption in the planar enedioates. From this the conclusion, subject to substantiation by molecular mechanical or quantum chemical calculations, was drawn that even the E-isomeric and comparatively less substituted enedioates are highly sterically perturbed. An alternative to an earlier explanation of the bathochromic shift of absorption maxima encountered in the 5-cyclic ene-ester and ene-nitrile, relative to the 6-cyclic analogues (observed also with the enedioates and cyanovinyl ester systems), seen later to have been based on unwarranted premises, has been advanced. A comment on the absorption characteristics of enedioic anhydrides has been appended.
Resumo:
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Resumo:
Preparation of Rb-beta -alumina was realized by the gel-to-crystallite conversion method. Reaction of hydrated aluminum hydroxide gel with RbOH in ethanol medium gave rise to the Rb+-inserted pseudoboehmite precursor under wet chemical conditions. The thermal decomposition of the precursor yielded Rb-beta -alumina. The Rb2O:Al2O3 ratio of monophasic Rb-beta -alumina ranged from 1:10 to 1:22. The extended stability in the compositional range is due to the fact that the conduction planes containing Rb+ and O2- ions can have lower occupancy of Rb+ ions for larger sized alkali ions, permitting the steric separation of the adjoining spinel blocks. High-resolution electron microscopy revealed that the decreasing occupancy of alkali ions in the conduction plane is balanced by changing widths of spinel blocks arising from the shift of tetrahedral Al3+ ions to octahedral sites and an accompanying increase in stacking defects. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The 1,2-shift observed during oxidation of organic substrates can arise by involvement of cation radicals.
Resumo:
A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.
Resumo:
The availability of electrophoretically homogeneous rabbit penicillin carrier receptor protein (CRP) by affinity chromatography afforded an idealin vitro system to calculate the thermodynamic parameters of binding of penicillin and analogues with CRP as well as competitive binding of such analogues with CRP in presence of14C-penicillin G. The kinetics of association of CRP with 7-deoxy penicillin which does not bind covalently with CRP have been studied through equilibrium dialysis with14C-7-deoxybenzyl penicillin and found to be K=2·79×106M−1.−ΔG=8·106 k cal/mole as well as fluorescence quenching studies with exciter λ 280 K=3·573×106M−1,−ΔG=8·239 k cal/mole. The fluorescence quenching studies have been extended to CRP-benzyl penicillin and CRP-6-aminopenicillanic acid (6APA) systems also. The fluorescence data with benzyl penicillin indicate two conformational changes in CRP—a fast change corresponding to the non-covalent binding to CRP with 7-deoxy penicillin and a slower change due to covalent bond formation. With 6-APA the first change is not observed but the conformational change corresponding to covalent binding is only seen. Competitive binding studies indicate that the order of binding of CRP with the analogues of penicillin is as follows: methicillin > 6APA > carbenicillin >o-nitrobenzyl penicillin > cloxacillin ≈ benzyl penicillin ≈ 6-phenyl acetamido penicillanyl alcohol ≈ 7 phenyl acetamido desacetoxy cephalosporanic acid ≈p-amino benzyl penicillin ≈p-nitro benzyl penicillin > ticarcillin >o-amino benzyl penicillin > amoxycillin > 7-deoxy benzyl penicillin > ampicillin.From these data it has been possible to delineate partially the topology of the penicillin binding cleft of the CRP as well as some of the functional groups in the cleft responsible for the binding process.
Resumo:
The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.
Resumo:
The dissolution, accompanied by chemical reaction, of monodisperse solid particles has been analysed. The resulting model, which accounts for the variation of mass transfer coefficient with the size of the dissolving particles, yields an approximate analytical form of a kinetic function. Rigorous numerical and approximate analytical solutions have been obtained for the governing system of nonlinear ordinary differential equations. The transient nature of the dissolution process as well as the accuracy of the analytical solution is brought out by the rigorous numerical solution. The analytical solution is fairly accurate for the major part of the range of operational times encountered in practice.
Resumo:
An invariant imbedding method yields exact analytical results for the distribution of the phase theta (L) of the reflection amplitude and for low-order resistance moments (pn) for a disordered conductor of length L in the quasi-metallic regime L<
Resumo:
Single crystals of potassium hydrogen phthalate (KAP) have been grown by slow evaporation method from aqueous solutions. Thermal analyses indicate that KAP crystals decompose into phthalic anhydride and KOH around 520 K. Electrical properties of single crystals of KAP have been studied along with the effect of X-ray irradiation of the crystals. The electrical transport appears to be associated with tunneling of protons. The irradiated crystal exhibits lower dielectric constant and higher ac conductivity.
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Specific penicillin-carrier receptor proteins (CRP) have been isolated from the sera of penicillin allergic rabbits and human subjects in the unconjugated native state in electrophoretically homogeneous form by employing a synthetic polymeric affinity template containing the 7-deoxy analogue of penicillin G. The synthesis of the 7-deoxy analogue has been described. In this affinity system the antipenicillin-antibody is desorbed by 0·9M thiourea and the CRP in 8M urea. The CRP after incubation with penicillin is converted into the full-fledged antigen. Studies on the origin of CRP and the nature of antibody as well as comparative studies on the properties of the rabbit antibody and those of antibodies elicited by a BSA-BPO conjugate are reported.
Resumo:
The availability of an electrophoretically homogeneous rabbit penicillin carrier receptor protein (CRP) and rabbit antipenicillin antibody afforded an idealin vitro system to calculate the thermodynamic parameters of the binding of14C benzyl penicillin CRP conjugate (antigen) to the purified rabbit antipenicillin antibody. The thermodynamic parameters of this antigen-antibody reaction has been studied by radio-active assay method by using millipore filter. Equilibrium constant (K) of this reaction has been found to be 2·853×109M−2 and corresponding free energy (ΔG) at 4°C and 37°C has been calculated to be −12·02 and −13·5 kcal/mole, enthalpy (ΔH) and entropy (ΔS) has been found to be 361 kcal/mole and +30 eu/mole respectively. Competitive binding studies of CRP-analogue conjugates with the divalent rabbit antibody has been carried out in the presence of14C-penicilloyl CRP. It was found that 7-deoxy penicillin-CRP complex and 6-amino penicilloyl CRP conjugate binds to the antibody with energies stronger than that with the14C-penicilloyl CRP. All the other analogue conjugates are much weaker in interfering with the binding of the penicilloyl CRP with the antibody. The conjugate of methicillin,o-nitro benzyl penicillin and ticarcillin with CRP do not materially interfere in the process.
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.