944 resultados para CATHODIC CLEAVAGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anisotropy of magnetic susceptibility (AMS) study was performed on soft sediment samples from a trenched fault zone across the Himalayan frontal thrust (HFT), western Himalaya. AMS orientation of K-min axes in the trench sediments is consistent with lateral shortening revealed by geometry of deformed regional structures and recent earthquakes. Well-defined vertical magnetic foliation parallel to the flexure cleavage in which a vertical magnetic lineation is developed, high anisotropy, and triaxial ellipsoids suggest large overprinting of earth-quake- related fabrics. The AMS data suggest a gradual variation from layer parallel shortening (LPS) at a distance from the fault trace to a simple shear fabric close to the fault trace. An abrupt change in the shortening direction (K-min) from NE-SW to E-W suggests a juxtaposition of pre-existing layer parallel shortening fabric, and bending-related flexure associated with an earthquake. Hence the orientation pattern of magnetic susceptibility axes helps in identifying co-seismic structures in Late Holocene surface sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C-beta-S bond cleavage through H-alpha abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H-beta abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MSn) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides An 446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ternary cobalt(III) complexes CoL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyridoquinoxaline (dpq in 2) and dipyridophenazine (dppz in 3) are synthesized, characterized from X-ray crystallographic, analytical and spectral techniques, and their utility in photodynamic therapy (PDT) of thyroid diseases caused by TSH receptor dysfunction is probed. The complexes display a visible spectral band within the PDT spectral window at similar to 690 nm. Photodynamic potential was estimated through DNA cleavage activity of the dpq and dppz complexes in UV-A light of 365 nm and red light of 676 nm. The reactions proceed via the hydroxyl radical pathway. The complexes retain their DNA photocleavage activity in red light under anaerobic conditions, a situation normally prevails in hypoxic tumor core. Investigation into the photocytotoxic potential of these complexes showed that the dppz complex 3 is approximately 4-fold more active in the HEK293 cells expressing human thyrotropin receptor (HEK293-hTSHR) than in the parental cell line and has an insignificant effect on an unrelated human cervical carcinoma cell line (HeLa). Photoexcitation of complex 3 in HEK293-hTSHR cells leads to damage hTSHR as evidenced from the decrease in cAMP formation both in absence and presence of hTSH and decrease in the TSHR immunofluorescence with a concomitant cytoplasmic translocation of the membrane protein, cadherin. The involvement of hTSHR is evidenced from the ability of complex 3 to bind to the extracellular domain of hTSHR (hTSHR-ECD) with a K-d value of 81 nM and from the photocleavage of hTSHR-ECD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of 6-Image -butyl-1-bromomethyl-2-(2-tetrahydropyranyloxy)-naphthalene2c with tetrachlorocatechol (TCC) in acetone in presence of K2CO3 gave diastereomers 6c and 7c. A mechanism (Scheme-1) invoking the base induced cleavage of the pyranyl ether 2 to 1,2-naphthoquinone-1-methide 8 as the first step has been postulated. The cleavage of the pyranyl ether linkage in 2 to give dimers 4 and 5 of 1,2-naphthoquinone-1-methide has been demonstrated with different bases. 1,2-Naphthoquinone-1-methide 8, thus generated, undergoes Michael addition with TCC followed by elimination of chloride ions to give a diketone, which further undergoes aldolisation with acetone to give diastereomers 6 and 7. Michael reaction of 8, generated Image from pyranyl ethers 2a-c, with tetrabromocatechol (TBC) under similar-reaction conditions gave the expected monobromo compounds 6h, 6i, 6k, 7n, 7n and 7q. The last step in the proposed mechanism, Image ., aldolisation has also been demonstrated using different ketonic solvents. Thus, reaction of 2a-c with TCC/TBC in diethyl ketone/methyl ethyl ketone under similar reaction conditions gave the expected compounds 6 and 7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of the PbO2 electrode in NaNO3, Na2SO4 NaClO4 and NaCl in the pH range 3.0–10.5 has been studied by cyclic voltammetry. When the electrode is cycled between 0.30 and 1.90 V, a large cathodic current peak appears in the negative scan; in the subsequent cycle, two anodic peaks appear. The addition of H2O2 at low concentrations to the electrolyte also results in two anodic peaks at the same potentials. A number of possible explanations for the appearance of the cathodic peak, and a mechanism for the oxidation of PbO to PbO2 through Pb3O4 corresponding to the two anodic peaks, are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An endocellulase (1→4)-β-d-glucan 4-glucanohydrolase was isolated from the culture filtrates of Chaetomium thermophile. The enzyme was homogeneous by PAGE and SDS-PAGE. The molecular weight was 36 000 by SDS-PAGE and 38 000 by gel filtration. It was a glycoprotein. From the amino acid composition, it was found to be rich in glycine, threonine, and aspartic and glutamic acids, but contained only low proportions of histidine and sulfur-containing amino acids. It was optimally active at pH 6 and at 60°. The enzyme did not hydrolyze cellobiose and cellotriose, but hydrolyzed cello-tetraose, -pentaose, and -hexaose at comparable rates. It was specific for molecules containing β-(1→4) linkages. It showed high activity towards amorphous cellulose, and the reaction products contained cellobiose to cellopentaose, showing that it effects random cleavage of cellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid,2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a finite element analysis of steady-state dynamic crack growth under Mode I, plane strain, small-scale yielding conditions is performed in a rate dependent plastic material characterized by the over-stress model. The main objective of the paper is to obtain theoretically the dependence of dynamic fracture toughness on crack speed. Crack propagation due to a ductile (micro-void) mechanism or a brittle (cleavage) mechanism, as well as transition from one mode to another are considered. The conversion from ductile to brittle has been observed experimentally but has received very little attention using analytical methods. Local fracture criteria based on strains and stresses are used to describe ductile and brittle fracture mechanisms. The results obtained in this paper are in general agreement with micro-structural observations of mode conversion during fracture initiation. Finally, the particular roles played by material rate sensitivity and inertia are examined in some detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oxidative pathway hitherto unknown for tile degradation of a sesquiterpene alcohol, nerolidol (I) by Alcaligenes eutrophus is presented. Fermentation of nerolidol (I) by this organism in a mineral salts medium resulted in the formation of geranylacetone (II) and an optically active alcohol (S)-(+)-geranylacetol (III), as major metabolites. Nerolidol (I) induced cells readily transformed 1,2-epoxynerolidol (IV) and 1,2-dihydroxynerolidol (V) into geranylacetone (II). These cells also exhibited their ability to carry out stereospecific reduction of II into (S)-(+)-geranylacetol (III). Oxygen uptake studies clearly indicated that nerolidol induced cells oxidized compounds II, III, IV, V and ethyleneglycol. Based on these observations a new oxidative pathway for the degradation of I is suggested which envisages the epoxidation of the terminal double bond, opening of the epoxide and cleavage between C-2 and C-3 in a manner similar to the periodate oxidation of diol.