987 resultados para CA 125
Resumo:
The feasibility of Portland cement analysis by introduction of slurries in an inductively coupled plasma optical emission spectrometer (ICP-OES) with axial viewing has been evaluated. After a fast manual grinding of the cement samples, owing to the pulverized state of this material, 0.1% m/v slurries were prepared in 1% v/v HCl. The calibration was performed adopting two strategies: one based on slurries prepared from different masses (50, 75, 100 and 125 mg) of a Portland cement standard reference material (NIST SRM 1881), and the other one based on aqueous reference solutions. A complete analysis of cement for major (Al, Ca, Fe, Mg and Si), minor and trace elements (Mn, P, S, Sr and Ti) was accomplished. Both strategies led to accurate results for commercial Portland cement samples, except for Si and Ti. for which the calibration with aqueous reference solutions resulted in low values. Applying a paired t-test it was shown that most results were in agreement at a 95% confidence level with a conventional fusion decomposition procedure. The ICP-OES with axial viewing and end-on gas configuration for removal of the recombination plasma zone was effective for cement slurry analysis without any undesirable particle deposition in the pre-optics interface and without severe spectral interferences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Pb1-xCaxTiO3 (0.10less than or equal toxless than or equal to0.40) thin films on Pt/Ti/SiO2/Si(100) substrates were prepared by the soft solution process and their characteristics were investigated as a function of the calcium content (x). The structural modifications in the films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate a decrease in lattice tetragonality with the increasing content of calcium in these films. Raman spectra exhibited characteristic features of pure PbTiO3 thin films. Variations in the phonon mode wave numbers, especially those of lower wave numbers, of Pb1-xCaxTiO3 thin films as a function of the composition corroborate the decrease in tetragonality caused by the calcium doping. As the Ca content (x) increases from 0.10 to 0.40, the dielectric constant at room temperature abnormally increased at 1 kHz from 148 to 430. Also calcium substitution decreased the remanent polarization and coercive field from 28.0 to 5.3 muC/cm(2) and 124 to 58 kV/cm, respectively. These properties can be explained in terms of variations of phase transition (ferroelectric-paraelectric), resulting from the substitution the lead site of PbTiO(3)for the nonvolatile calcium. (C) 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper was evaluated, using the software ANSYS, the stiffness (El) of the log-concrete composite beams, of section T, with connectors formed by bonded-in steel rods, type CA-50, disposed in X, with application of cyclical load. The stiffness of the system was evaluated through the simulation of bending tests, considered 1/2 beam, with cyclical shipment varying among 40 % and 5 % of the strength of the connection with the load relationship R=0,125, for a total of 10 load cycles applied. The numeric results show a good agreement with experimental tests.
Resumo:
An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
Uranium-lead zircon ages between 660 and 640 Ma, obtained from a series of calc-alkaline orthogneisses and plutons in southeast Brazil's Central Mantiqueira Province, suggest that a significant period of magmatism occurred in this region prior to the collisional assembly of West Gondwana (presently constrained in the region between ca. 625 and 580 Ma). While the nature of this earlier magmatism is presently unclear, some preliminary Sm-Nd data suggest that these magmas were not solely derived from the Paleoproterozoic lithosphere, but appear to represent hybrid products of Paleoproterozoic and Neoproterozoic sources. As such hybrid mixtures have been most commonly observed in continental are settings, it is possible that the 660 to 640 Ma magmatism represents are magmatism that resulted from subduction of Neoproterozoic oceanic crust during early precollisional convergence and closure of a branch of either the Adamastor or Goianides oceans.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the distribution of microorganisms in the root canal system (RCS) and periapical lesions of dogs' teeth after rotary instrumentation and placement of different calcium hydroxide [Ca(OH)2]-based intracanal dressings. MATERIALS AND METHODS: Chronic periapical lesions were experimentally induced in 80 premolar roots of four dogs. Instrumentation was undertaken using the ProFile rotary system and irrigation with 5.25% sodium hypochlorite. The following Ca(OH) 2-based pastes were applied for 21 days: group 1 - Calen (n=18); group 2 - Calen+CPMC (n=20); group 3 - Ca(OH)2 p.a. + anaesthetic solution (n=16) and group 4 - Ca(OH)2 p.a.+ 2% chlorhexidine digluconate (n=18). Eight root canals without endodontic treatment constituted the control group. Histological sections were obtained and stained with Brown & Brenn staining technique to evaluate the presence of microorganisms in the main root canal, ramifications of the apical delta and secondary canals, apical cementoplasts, dentinal tubules, areas of cemental resorption and periapical lesions. The results were analyzed statistically by the Mann-Whitney U test (p<0.05). RESULTS: The control group showed the highest prevalence of microorganisms in all sites evaluated. Gram-positive cocci, bacilli and filaments were the most frequent morphotypes. Similar microbial distribution patterns in the RCS and areas of cementum resorption were observed in all groups (p>0.05). The percentage of RCS sites containing microorganisms in groups 1, 2, 3, 4 and control were: 67.6%, 62.5%, 78.2%, 62.0% and 87.6%, respectively. CONCLUSION: In conclusion, the histomicrobiological analysis showed that the rotary instrumentation and the different calcium hydroxide pastes employed did not effectively eliminate the infection from the RCS and periapical lesions. However, several bacteria seen in the histological sections were probably dead or were inactivated by the biomechanical preparation and calcium hydroxide-based intracanal dressing.
Resumo:
Bioceramics with different Ca/P ratio were prepared from a mechanical mixture of NaPO3, CaCO3, Ca(OH)2 and phosphate buffer solution and implanted in rats subcutaneous tissues. The cements were characterized by Thermo gravimetric analysis (TG-TDA), X-ray diffraction and 31P-NMR. The implant sites were excised after 1, 4 and 16 weeks, fixed, dehydrated, included in paraffin wax for serial cutting and examined under the light transmitted microscope. They were biocompatible and biodegradable when implanted in rat subcutaneous. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.
Resumo:
This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.
Resumo:
In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.
Resumo:
This study investigated the effect of an Argon-based nonthermal plasma (NTP) surface treatment-operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: Calcium-Phosphate (CaP) and CaP + NTP (CaP-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received 2 plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ca, C, O, and P for the CaP and CaP-Plasma surfaces. Both surfaces presented carbon primarily as hydro-carbon (CAC, CAH) with lower levels of oxidized carbon forms. The CaP surface presented atomic percent values of 38, 42, 11, and 7 for C, O, Ca, and P, respectively, and the CaPPlasma presented increases in O, Ca, and P atomic percent levels at 53, 12, and 13, respectively, in addition to a decrease in C content at 18 atomic percent. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC and BAFO were observed for CaPPlasma treated surfaces. Surface elemental chemistry was modified by the Ar-based NTP. Ar-based NTP improved bone formation around plateau-root form implants at 3 weeks compared with CaP treatment alone. © 2012 Wiley Periodicals, Inc.
Resumo:
Ca1+xCu3-xTi4O12 powders were synthesized by a conventional solid-state reaction. X-ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O 12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca 1-xCu3-xTi4O12 (x = 1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE-SEM images show that the Ca 1+xCu3-xTi4O12 (0 < x < 3) powders are composed of several agglomerated particles with irregular morphology. X-ray absorption near-edge structure spectroscopy (XANES) spectra indicated [TiO5Vo z]-[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Vo z = V o x, Vo •, and Vo ••) whereas in the CaTiO3 powder, this analysis indicated [TiO6]-[TiO6] complex clusters in the structure. Ultraviolet-visible (UV-vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively. © 2012 The American Ceramic Society.