959 resultados para C-C bond formation


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vols. III-IV are 18th edition.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Discourse before the New-York Historical Society, 1827 -- Review of the principles of the Holy Alliance -- Report to American institute proposing annual fairs -- Argument in case of Erastus Root v. Chas. King, &c. -- Historical view of the formation of the American Union -- Review of the Cherokee question -- Address before the New York historical society, 1839 -- Report on common roads-- Review of Ivanhoe -- Address of the Home League to the people of the United States, 1842 -- Report to the National Convention, 1842 -- Lecture on coal, before the American institute.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulficlophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: + 133 mV (pH 6.0); + 104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxY, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The ingress of water into poly(2-hydroxyethyl methacrylate), PHEMA, loaded with either one of two model drugs, vitamin B-12 or aspirin, was studied at 37 degreesC using three-dimensional NMR imaging. PHEMA was loaded with 5 and 10 wt % of the drugs. From the imaging profiles, it was observed that incorporation of vitamin B-12 into PHEMA resulted in enhanced crack formation on sorption of water and the crack healing behind the diffusion front was slower than for PHEMA without added drug. This was accounted for by the anti-plasticization of PHEMA by vitamin B-12. Crack formation was inhibited in the P-HEMA-aspirin systems because of the plasticizing effect of the aspirin on the PHEMA matrix. All of the polymers were found to absorb water according to an underlying Fickian diffusion mechanism. For PHEMA loaded with 5 wt % of aspirin or vitamin B-12, the best values of the water diffusion coefficients were both found to be 1.3 +/- 0.1 x 10(-11) m(2) s(-1) at 37 degreesC, while the values for the polymer loaded with 10 wt % of the drugs were slightly higher, 1.5 +/- 0.1 x 10(-11) m(2) s(-1).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Temperature is an important parameter controlling protein crystal growth. A new temperature-screening system (Thermo-screen) is described consisting of a gradient thermocycler fitted with a special crystallization-plate adapter onto which a 192-well sitting-drop crystallization plate can be mounted (temperature range 277-372 K; maximum temperature gradient 20 K; interval precision 0.3 K). The system allows 16 different conditions to be monitored simultaneously over a range of 12 temperatures and is well suited to conduct wide (similar to 20 K) and fine (similar to 3 K) temperature-optimization screens. It can potentially aid in the determination of temperature phase diagrams and run more complex temperature-cycling experiments for seeding and crystal growth.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The chromophore of the red fluorescent protein DsRed contains an acylimine substituent to a GFP-like chromophore structure. The acylimine is formed from the trans peptide linkage between residues F65 and Q66 in immature DsRed, but has a cis configuration in the mature protein. The relationship between acylimine formation and trans–cis isomerization is unresolved. We have calculated bond rotation profiles for models of mature and immature DsRed chromophores using B3LYP DFT. The isomerization barrier is substantially reduced in acylimine-substituted models, providing prima facie evidence that acylimine formation precedes trans–cis isomerization in DsRed chromophores.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PKC-mediated signalling pathways are important in cell growth and differentiation, and aberrations in these pathways are implicated in tumourigenesis. The objective of this project was to clarify the link between cell growth inhibition and PKC modulation.The PKC activators bryostatin 1 and 12-0-tetradecanoylphorbol-13-acetate (TPA) inhibited growth in A549 and MCF-7 adenocarcinoma cells with great potency, and induced HL-60 leukaemia cell differentiation. Bistratene A affected these cells similarly. Experiments were conducted to test the hypotheses that bistratene A exerts its effects via PKC modulation and that characteristics of cytostasis induced by bryostatin 1 and TPA depend upon PKC isozyme-specific events. After incubation of A549 cells with TPA or bistratene A, 2D phosphoprotein electrophoretograrns revealed three proteins phosphorylated by both agents. However, bistratene A was unable to induce the formation of cellular networks on the basement membrane substitute Matrigel, and staurosporine was unable to reverse bistratene A-induced [3H]thymidine uptake inhibition, unlike TPA. Bistratene A did not induce PKC translocation or downregulation, activate or inhibit A549 and MCF-7 cell cytosolic PKC or compete for phorbol ester receptors. Western blot analysis and hydroxylapatite chromatography identified PKC α, ε and ζ in these cells. Bistratene A was unable to activate any of these isoforms. Therefore the agent does not exert its antiproliferative effects by modulation of PKC activity. The abilities of bryostatin 1 and TPA (10nM-1μM) to induce PKC isoform translocation and downregulation were compared with antiproliferative effects. Both agents induced dose-dependent downregulation and translocation of PKC α and ε to particulate and nuclear cell fractions. PKC ζ was translocated to the particulate fraction by both agents in MCF-7 cells. The similarity of PKC isoform redistribution by these agents did not explain their divergent effects on cell growth, and the role of nuclear translocation of PKC in cytostasis was not confirmed by these studies. Alternative factors governing the characteristics of growth inhibition induced by these agents are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The basement membrane (BM) is a highly conserved form of extracellular matrix that underlies or surrounds and supports most animal tissues. BMs are crossed by cells during various remodeling events in development, immune surveillance, or during cancer metastasis. Because BMs are dense and not easily penetrable, most of these cells must open a gap in order to facilitate their migration. The mechanisms by which cells execute these changes are poorly understood. A developmental event that requires the opening of a BM gap is C. elegans uterine-vulval connection. The anchor cell (AC), a specialized uterine cell, creates a de novo BM gap. Subsequent widening of the BM gap involves the underlying vulval precursor cells (VPCs) and the π cells, uterine neighbors of the AC through non-proteolytic BM sliding. Using forward and reverse genetic screening, transcriptome profiling, and live-cell imaging, I investigated how the cells in these tissues accomplish BM gap formation. In Chapter 2, I identify two potentially novel regulators of BM breaching, isolated through a large-scale forward genetic screen and characterize the invasion defect in these mutants. In Chapter 3, I describe single-cell transcriptome sequencing of the invasive AC. In Chapter 4, I describe the role of the π cells in opening the nascent BM gap. A complete developmental pathway for this process has been elucidated: the AC induces the π fate through Notch signaling, after which the π cells upregulate the Sec14 family protein CTG-1, which in turn restricts the trafficking of DGN-1 (dystroglycan), a laminin receptor, allowing the BM to slide. Chapter 5 outlines the implications of these discoveries.