922 resultados para Buildings, Prefabricated
Resumo:
This research investigates a new structural system utilising modular construction. Five-sided boxes are cast on-site and stacked together to form a building. An analytical model was created of a typical building in each of two different analysis programs utilising the finite element method (Robot Millennium and ETABS). The pros and cons of both Robot Millennium and ETABS are listed at several key stages in the development of an analytical model utilising this structural system. Robot Millennium was initially utilised but created an analytical model too large to be successfully run. The computation requirements were too large for conventional computers. Therefore Robot Millennium was abandoned in favour of ETABS, whose more simplistic algorithms and assumptions permitted running this large computation model. Tips are provided as well as pitfalls signalled throughout the process of modelling such complex buildings of this type. ^ The building under high seismic loading required a new horizontal shear mechanism. This dissertation has proposed to create a secondary floor that ties to the modular box through the use of gunwales, and roughened surfaces with epoxy coatings. In addition, vertical connections necessitated a new type of shear wall. These shear walls consisted of waffled external walls tied through both reinforcement and a secondary concrete pour. ^ This structural system has generated a new building which was found to be very rigid compared to a conventional structure. The proposed modular building exhibited a period of 1.27 seconds, which is about one-fifth of a conventional building. The maximum lateral drift occurs under seismic loading with a magnitude of 6.14 inches which is one-quarter of a conventional building's drift. The deflected shape and pattern of the interstorey drifts are consistent with those of a coupled shear wall building. In conclusion, the computer analysis indicate that this new structure exceeds current code requirements for both hurricane winds and high seismic loads, and concomitantly provides a shortened construction time with reduced funding. ^
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.
Resumo:
Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.
Resumo:
A debate is currently prevalent among the structural engineers regarding the use of cracked versus un-cracked moment of inertia of the structural elements in analyzing and designing tall concrete buildings. (The basic definition of a tall building, according to the Journal of Structural Design of Tall Buildings Vol. 13. No. 5, 2004 is a structure that is equal to or greater than 160 feet in height, or 6 stories or greater.) The controversy is the result of differing interpretations of certain ACI (American Concrete Institute) code provisions. The issue is whether designers should use cracked moment of inertia in order to estimate lateral deflection and whether the computed lateral deflection should be used to carry out subsequent second-order analysis (analysis considering the effect of first order lateral deflections on bending moment and shear stresses). On one hand, bending moments and shear forces estimated based on un-cracked moment of inertia of the sections may result in conservative designs by overestimating moments and shears. On the other hand, lateral deflections may be underestimated due to the same analyses resulting in unsafe designs.
Semi-engineered earthquake-resistant structures: one-storey buildings built up with gabion-box walls
Resumo:
This thesis studies the static and seismic behavior of simple structures made with gabion box walls. The analysis was performed considering a one-story building with standard dimensions in plan (6m x 5m) and a lightweight timber roof. The main focus of the present investigation is to find the principals aspects of the seismic behavior of a one story building made with gabion box walls, in order to prevent a failure due to seismic actions and in this way help to reduce the seismic risk of developing countries where this natural disaster have a significant intensity. Regarding the gabion box wall, it has been performed some calculations and analysis in order to understand the static and dynamic behavior. From the static point of view, it has been performed a verification of the normal stress computing the normal stress that arrives at the base of the gabion wall and the corresponding capacity of the ground. Moreover, regarding the seismic analysis, it has been studied the in-plane and out-of-plane behavior. The most critical aspect was discovered to be the out-of-plane behavior, for which have been developed models considering the “rigid- no tension model” for masonry, finding a kinematically admissible multiplier that will create a collapse mechanism for the structure. Furthermore, it has been performed a FEM and DEM models to find the maximum displacement at the center of the wall, maximum tension stresses needed for calculating the steel connectors for joining consecutive gabions and the dimensions (length of the wall and distance between orthogonal walls or buttresses) of a geometrical configuration for the standard modulus of the structure, in order to ensure an adequate safety margin for earthquakes with a PGA around 0.4-0.5g. Using the results obtained before, it has been created some rules of thumb, that have to be satisfy in order to ensure a good behavior of these structure.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Heating, ventilation, air conditioning (HVAC) systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. We present an approach to occupant location prediction based on association rule mining, allowing prediction based on historical occupant locations. Association rule mining is a machine learning technique designed to find any correlations which exist in a given dataset. Occupant location datasets have a number of properties which differentiate them from the market basket datasets that association rule mining was originally designed for. This thesis adapts the approach to suit such datasets, focusing the rule mining process on patterns which are useful for location prediction. This approach, named OccApriori, allows for the prediction of occupants’ next locations as well as their locations further in the future, and can take into account any available data, for example the day of the week, the recent movements of the occupant, and timetable data. By integrating an existing extension of association rule mining into the approach, it is able to make predictions based on general classes of locations as well as specific locations.
Resumo:
Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.
Resumo:
Food production and consumption for cities has become a global concern due to increasing numbers of people living in urban areas, threatening food security. There is the contention that people living in cities have become disconnected with food production, leading to reduced nutrition in diets and increased food waste. Integrating food production into cities (urban agriculture) can help alleviate some of these issues. Lack of space at ground level in high-density urban areas has accelerated the idea of using spare building surfaces for food production. There are various growing methods being used for food production on buildings, which can be split into two main types, soil-less systems and soil-based systems. This paper is a holistic assessment (underpinned by the triple bottom line of sustainable development) of these two types of systems for food production on buildings, looking at the benefits and limitation of each type in this context. The results illustrate that soil-less systems are more productive per square metre, which increases the amount of locally grown, fresh produce available in urban areas. The results also show that soil-based systems for cultivation on buildings are more environmentally and socially beneficial overall for urban areas than soil-less systems.
Resumo:
GEA Consulting Engineers, acting as the design engineers, was hired by the owner, East Village 207 Residential LLC2 for energy modeling for compliance with LEED NC V3 -- This report details the results of the energy simulation done with the 100% construction documents -- This report only refers to entities within the LEED3 project boundary -- The project consists of a new eight-story high-end residential condominium building with 81 units, as shown in illustration 1, and approximately 117,905 GSF, equivalent to 10,953.73 m2, is located at 211 E 13th Street in New York, NY -- The residential portion of the building will function 24-7 -- The design goal is to utilize energy efficient measures to reduce electrical energy use and aims to achieve LEED certification -- LEED EA Credit 14 requires a building to demonstrate a percentage improvement in the proposed building performance compared with the baseline building -- The Credit rewards 1 point for achieving 12% reduction in energy costs -- Additionally, the Credit rewards another point for each subsequent reduction of 2% in the building’s energy cost
Resumo:
Indoor and outdoor concentrations of various pollutants were measured in a naturally ventilated building in the West End of Edinburgh during and after the period of the Commonwealth Heads of Government Meeting (CHOGM) to assess the effect upon indoor pollution levels of the closure of some streets in the city. The relationships between indoor and outdoor air qualities in respect of traffic-generated pollutants were studied and the building’s relative attenuation of external pollution levels investigated. The peak concentrations of some of the external pollutants were attenuated by the building and the internal concentrations showed a reduction of up to 30% in some periods. During periods of reduced traffic, the early analyses indicate that the daily mean concentrations of the pollutants were not significantly different from those measured at other times.
Resumo:
This article presents the methodology and main results obtained in Spain within the FORMAR project, a European-funded project under the Leonardo Da Vinci scheme (Lifelong Learning Programme), whose main goal is to jointly develop training resources and modules to improve the skills on sustainability issues of buildings maintenance and refurbishment workers, in three different European countries: Spain, Portugal (Project Coordinator) and France. The Units of Short-term Training (UST) developed within this project are focused on the VET of carpenters, painters, bricklayers, building technicians and installers of solar panels, and a transversal unit containing basic concepts on sustainable construction and nearly Zero Energy Buildings (n-ZEB) is also developed. In parallel, clients’ guides for the aforementioned professionals are also implemented to improve the information provided to clients and owners in order to support the procurement decisions regarding building products and materials. Therefore, the project provides an opportunity to exchange experiences between organizations of these three European countries, as the UST will be developed simultaneously in each of them, exploring opportunities for training, guidance and exchange of experience. Even though the UST will have a common structure and contents, they will be slightly different in each country to adapt them to the different specific training needs and regulations of Spain, Portugal and France. This paper details, as a case study, the development process of the UST for carpenters and building technicians in Spain, including the analysis of needs and existing training materials, the main contents developed and the evaluation and testing process of the UST, which involves the active participation of several stakeholders of this sector as well as a classroom testing to obtain the students’ feedback.
Resumo:
In recent years, we have seen an improvement of existing facilities in dwellings in Portugal. Within the heat pumps systems, there is a special type known as direct expansion heat pump assisted by Solar Collector (DX-SAHP). It was calculate the SPF indicator for 30 regions of Portugal. It was analyses the potential of reductions of CO2 and primary energy use for the retrofitting of DHW preparation systems. It was found that the performances of this type of equipment are benefiting from the Portuguese climate conditions, especially in the South and in the Autonomous Regions. Best SPF was obtained for Beja. It was found in all regions of the high potential for reducing CO2 emissions and verifying a potential significant reduction of primary energy consumption.