918 resultados para Bruininks-Oseretsky Test of Motor Proficiency II
Resumo:
Escherichia coli possesses three SOS-inducible DNA polymerases (Pol II, IV, and V) that were recently found to participate in translesion synthesis and mutagenesis. Involvement of these polymerases appears to depend on the nature of the lesion and its local sequence context, as illustrated by the bypass of a single N-2-acetylaminofluorene adduct within the NarI mutation hot spot. Indeed, error-free bypass requires Pol V (umuDC), whereas mutagenic (−2 frameshift) bypass depends on Pol II (polB). In this paper, we show that purified DNA Pol II is able in vitro to generate the −2 frameshift bypass product observed in vivo at the NarI sites. Although the ΔpolB strain is completely defective in this mutation pathway, introduction of the polB gene on a low copy number plasmid restores the −2 frameshift pathway. In fact, modification of the relative copy number of polB versus umuDC genes results in a corresponding modification in the use of the frameshift versus error-free translesion pathways, suggesting a direct competition between Pol II and V for the bypass of the same lesion. Whether such a polymerase competition model for translesion synthesis will prove to be generally applicable remains to be confirmed.
Resumo:
To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein.
Resumo:
Human immunodeficiency virus (HIV)-encoded trans-activator (Tat) acts through the trans-activation response element RNA stem-loop to increase greatly the processivity of RNA polymerase II. Without Tat, transcription originating from the HIV promoter is attenuated. In this study, we demonstrate that transcriptional activation by Tat in vivo and in vitro requires the C-terminal domain (CTD) of RNA polymerase II. In contrast, the CTD is not required for basal transcription and for the formation of short, attenuated transcripts. Thus, trans-activation by Tat resembles enhancer-dependent activation of transcription. These results suggest that effects of Tat on the processivity of RNA polymerase II require proteins that are associated with the CTD and may result in the phosphorylation of the CTD.
Resumo:
Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.
Resumo:
Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.
Resumo:
The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago.
Resumo:
A hyperphosphorylated form of the largest subunit of RNA polymerase II (pol IIo) is associated with the pre-mRNA splicing process. Pol IIo was detected in association with a subset of small nuclear ribonucleoprotein particle and Ser-Arg protein splicing factors and also with pre-mRNA splicing complexes assembled in vitro. A subpopulation of pol IIo was localized to nuclear "speckle" domains enriched in splicing factors, indicating that it may also be associated with RNA processing in vivo. Moreover, pol IIo was retained in a similar pattern following in situ extraction of cells and was quantitatively recovered in the nuclear matrix fraction. The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes.
Resumo:
Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.
Resumo:
The alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) plays an important role in longterm synaptic plasticity. We applied preembedding immunocytochemistry (for CAM II kinase-alpha) and postembedding immunogold labeling [for glutamate or gamma-aminobutyric acid (GABA)] to explore the subcellular relationships between transmitter-defined axon terminals and the kinase at excitatory and inhibitory synapses in thalamus and cerebral cortex. Many (but not all) axon terminals ending in asymmetric synapses contained presynaptic CAM II kinase-alpha immunoreactivity; GABAergic terminals ending in symmetric synapses did not. Postsynaptically, CAM II kinase-alpha immunoreactivity was associated with postsynaptic densities of many (but not all) glutamatergic axon terminals ending on excitatory neurons. CAM II kinase-alpha immunoreactivity was absent at postsynaptic densities of all GABAergic synapses. The findings show that CAM II kinase-alpha is selectively expressed in subpopulations of excitatory neurons and, to our knowledge, demonstrate for the first time that it is only associated with glutamatergic terminals pre- and postsynaptically. CAM II kinase-alpha is unlikely to play a role in plasticity at GABAergic synapses.
Resumo:
Type II DNA topoisomerases, which create a transient gate in duplex DNA and transfer a second duplex DNA through this gate, are essential for topological transformations of DNA in prokaryotic and eukaryotic cells and are of interest not only from a mechanistic perspective but also because they are targets of agents for anticancer and antimicrobial chemotherapy. Here we describe the structure of the molecule of human topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3] as seen by scanning transmission electron microscopy. A globular approximately 90-angstrom diameter core is connected by linkers to two approximately 50-angstrom domains, which were shown by comparison with genetically truncated Saccharomyces cerevisiae topoisomerase II to contain the N-terminal region of the approximately 170-kDa subunits and that are seen in different orientations. When the ATP-binding site is occupied by a nonhydrolyzable ATP analog, a quite different structure is seen that results from a major conformational change and consists of two domains approximately 90 angstrom and approximately 60 angstrom in diameter connected by a linker, and in which the N-terminal domains have interacted. About two-thirds of the molecules show an approximately 25 A tunnel in the apical part of the large domain, and the remainder contain an internal cavity approximately 30 A wide in the large domain close to the linker region. We propose that structural rearrangements lead to this displacement of an internal tunnel. The tunnel is likely to represent the channel through which one DNA duplex, after capture in the clamp formed by the N-terminal domains, is transferred across the interface between the enzyme's subunits. These images are consistent with biochemical observations and provide a structural basis for understanding the reaction of topoisomerase II.
Resumo:
Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.
Resumo:
Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.
Resumo:
Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.
Resumo:
The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.