992 resultados para Boundary layer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airborne measurements of particle number concentrations from biomass burning were conducted in the Northern Territory, Australia, during June and September campaigns in 2003, which is the early and the late dry season in that region. The airborne measurements were performed along horizontal flight tracks, at several heights in order to gain insight into the particle concentration levels and their variation with height within the lower boundary layer (LBL), upper boundary layer (UBL), and also in the free troposphere (FT). The measurements found that the concentration of particles during the early dry season was lower than that for the late dry season. For the June campaign, the concentration of particles in LBL, UBL, and FT were (685 ± 245) particles/cm3, (365 ± 183) particles/cm3, and (495 ± 45) particle/cm3 respectively. For the September campaign, the concentration of particles were found to be (1233 ± 274) particles/cm3 in the LBL, (651 ± 68) particles/cm3 in the UBL, and (568 ± 70) particles/cm3 in the FT. The particle size distribution measurements indicate that during the late dry season there was no change in the particle size distribution below (LBL) and above the boundary layer (UBL). This indicates that there was possibly some penetration of biomass burning particles into the upper boundary layer. In the free troposphere the particle concentration and size measured during both campaigns were approximately the same.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fluid flow and heat transfer inside a triangular enclosure due to instantaneous heating on the inclined walls are investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer under the inclined walls may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. A new triple-layer integral approach of scaling analysis has been considered to obtain major scaling relations of the velocity, thicknesses, Nusselt number and the flow development time of the natural convection boundary layer and verified by direct numerical simulations over a wide range of flow parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A scaling analysis is performed for the transient boundary layer established adjacent to an inclined flat plate following a ramp cooling boundary condition. The imposed wall temperature decreases linearly up to a specific value over a specific time. It is revealed that if the ramp time is sufficiently large then the boundary layer reaches quasi-steady mode before the growth of the temperature is finished. However, if the ramp time is shorter then the steady state of the boundary layer may be reached after the growth of the temperature is completed. In this case, the ultimate steady state is the same as if the start up had been instantaneous. Note that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value for this cooling case. The onset of instability may set in at different stages of the boundary layer development. A proper identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is presented in this study. Different flow regimes based on the stability of the boundary layer have also been discussed with numerical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The natural convection boundary layer adjacent to an inclined plate subject to sudden cooling boundary condition has been studied. It is found that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value. A scaling relation for the onset of instability of the boundary layer is achieved. The scaling relations have been developed by equating important terms of the governing equations based on the development of the boundary layer with time. The flow adjacent to the plate can be classified broadly into a conductive, a stable convective or an unstable convective regime determined by the Rayleigh number. Proper scales have been established to quantify the flow properties in each of these flow regimes. An appropriate identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is also presented in this study. Different flow regimes based on the stability of the boundary layer have been discussed with numerical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.