917 resultados para Bollinger, Lee C., 1946-
Resumo:
In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been developed differ in their detection sensitivity when used for TBM, and detection power is paramount in epidemological studies or drug trials. We therefore developed a new fluid registration method that computes the mappings and performs statistics on them in a consistent way, providing a bridge between TBM registration and statistics. We used the Log-Euclidean framework to define a new regularizer that is a fluid extension of the Riemannian elasticity, which assures diffeomorphic transformations. This regularizer constrains the symmetrized Jacobian matrix, also called the deformation tensor. We applied our method to an MRI dataset from 40 fraternal and identical twins, to revealed voxelwise measures of average volumetric differences in brain structure for subjects with different degrees of genetic resemblance.
Resumo:
In this paper, we develop and validate a new Statistically Assisted Fluid Registration Algorithm (SAFIRA) for brain images. A non-statistical version of this algorithm was first implemented in [2] and re-formulated using Lagrangian mechanics in [3]. Here we extend this algorithm to 3D: given 3D brain images from a population, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the non-statistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the regularizing (i.e., the non-conservative Lagrangian) terms, creating four versions of the algorithm. We evaluated the accuracy of each algorithm variant using the manually labeled LPBA40 dataset, which provides us with ground truth anatomical segmentations. We also compared the power of the different algorithms using tensor-based morphometry -a technique to analyze local volumetric differences in brain structure- applied to 46 3D brain scans from healthy monozygotic twins.
Resumo:
We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithmdeveloped in [4], and used a Lagrangian framework to incorporate 0 th and 1st order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensorbased distances to compare the power and the robustness of the algorithms.
Resumo:
In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.
Resumo:
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a 2 = 0.55, p = 0.04, left; a 2 = 0.74, p = 0.006, right), bilateral parietal (a 2 = 0.85, p < 0.001, left; a 2 = 0.84, p < 0.001, right), and left occipital (a 2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto- occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.
Resumo:
The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
Resumo:
Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.
Resumo:
Brain asymmetry has been a topic of interest for neuroscientists for many years. The advent of diffusion tensor imaging (DTI) allows researchers to extend the study of asymmetry to a microscopic scale by examining fiber integrity differences across hemispheres rather than the macroscopic differences in shape or structure volumes. Even so, the power to detect these microarchitectural differences depends on the sample size and how the brain images are registered and how many subjects are studied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins (45 identical and fraternal pairs) to a geometrically-centered population mean template. We computed voxelwise maps of significant asymmetries (left/right hemisphere differences) for common fiber anisotropy indices (FA, GA). Quantitative genetic models revealed that 47-62% of the variance in asymmetry was due to genetic differences in the population. We studied how these heritability estimates varied with the type of registration target (T1- or T2-weighted) and with sample size. All methods consistently found that genetic factors strongly determined the lateralization of fiber anisotropy, facilitating the quest for specific genes that might influence brain asymmetry and fiber integrity.
Resumo:
Imaging genetics is a new field of neuroscience that blends methods from computational anatomy and quantitative genetics to identify genetic influences on brain structure and function. Here we analyzed brain MRI data from 372 young adult twins to identify cortical regions in which gray matter volume is influenced by genetic differences across subjects. Thickness maps, reconstructed from surface models of the cortical gray/white and gray/CSF interfaces, were smoothed with a 25 mm FWHM kernel and automatically parcellated into 34 regions of interest per hemisphere. In structural equation models fitted to volume values at each surface vertex, we computed components of variance due to additive genetic (A), shared (C) and unique (E) environmental factors, and tested their significance. Cortical regions in the vicinity of the perisylvian language cortex, and at the frontal and temporal poles, showed significant additive genetic variance, suggesting that volume measures from these regions may provide quantitative phenotypes to narrow the search for quantitative trait loci that influence brain structure.
Resumo:
We analyzed brain MRI data from 372 young adult twins toidentify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influencewas found in frontal and parietal regions. Inaddition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the searchfor quantitative trait lociinfluencing brain structure.
Resumo:
We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.