828 resultados para Bodily Secretions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Brucellosis is a zoonosis caused by bacteria of the genus Brucella. Man infection occurs through contact with reproductive secretions as placenta and its lochia, semen and penile secretion of infected animals or by consuming unpasteurized milk and dairy products. With the objective of investigating the presence of bacteria in milk, 30 samples of raw milk sold illegally in the region of Botucatu, São Paulo, Brazil, as well as 50 samples of milk delivered to a dairy industry previously to its pasteurization were evaluated by the polymerase chain reaction (PCR) technique. Of the 80 samples analyzed, 10 samples (12.5%) were positive and 70 (87.5%) were negative. Among the positive samples, 5 (16.6%) were from illegal traders and other 5 (10%) were obtained from the dairy industry. Brucella spp. positivity shows that the pathogen is representatively present in Botucatu, São Paulo, Brazil, and the risk associated to public health due to the commercialization of illegal products without pasteurization is real.
Resumo:
Mastitis occurrence in mares is low if compared to other livestock species. The microorganisms often isolated and detected in milk and mammary gland secretions of mares are Streptococcus beta-haemolytica, Staphylococcus spp., Pseudomonas aeruginosa, Actinobacillus spp., and enterobacter. The present experiment was designed to evaluate the main microorganisms present in the milk of healthy mares and having a mammary infection. One hundred and ten mammary glands from 55 lactating mares were analyzed, ranging from 15 to 150 d post-partum. The mastitis diagnostic was performed through analysis of the milk via the screened test of the mug with dark background (Tamis), mammary gland inflammation and/or systemic signs. The subclinical mammary gland infection was characterized via the California Mastitis Test (CMT). From the 55 lactating mares, 2 (3.64%) had clinical mastitis. Following the CMT, the mares presented: 13 (23.60%), 7 (12.72%), and 12 (21.88%) scores from 1+, 2+, and 3+, respectively. From the 110 mamary glands were analysed, in 47 (85.45%) of these samples strains of microorganisms were isolated. In summary, results from our experiment suggest a low occurrence of clinical mastitis in lactating mares.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Docência para a Educação Básica - FC
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to develop a suitable experimental model of natural Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus), describe the distribution and character of tuberculous lesions, and to examine possible routes of disease transmission. In October 1997, 10 mature female white-tailed deer were inoculated by intratonsilar instillation of 2 3 103 (low dose) or 2 3 105 (high dose) colony forming units (CFU) of M. bovis. In January 1998, deer were euthanatized, examined, and tissues were collected 84 to 87 days post inoculation. Possible routes of disease transmission were evaluated by culture of nasal, oral, tonsilar, and rectal swabs at various times during the study. Gross and microscopic lesions consistent with tuberculosis were most commonly seen in medial retropharyngeal lymph nodes and lung in both dosage groups. Other tissues containing tuberculous lesions included tonsil, trachea, liver, and kidney as well as lateral retropharyngeal, mandibular, parotid, tracheobronchial, mediastinal, hepatic, mesenteric, superficial cervical, and iliac lymph nodes. Mycobacterium bovis was isolated from tonsilar swabs from 8 of 9 deer from both dosage groups at least once 14 to 87 days after inoculation. Mycobacterium bovis was isolated from oral swabs 63 and 80 days after inoculation from one of three deer in the low dose group and none of four deer in the high dose group. Similarly, M. bovis was isolated from nasal swabs 80 and 85 days after inoculation in one of three deer from the low dose group and 63 and 80 days after inoculation from two of four deer in the high dose group. Intratonsilar inoculation with M. bovis results in lesions similar to those seen in naturally infected white-tailed deer; therefore, it represents a suitable model of natural infection. These results also indicate that M. bovis persists in tonsilar crypts for prolonged periods and can be shed in saliva and nasal secretions. These infected fluids represent a likely route of disease transmission to other animals or humans.
Resumo:
Tuberculosis due to Mycobacterium bovis infection is endemic in white-tailed deer (Odocoileus virginianus) in the northeastern portion of the lower Michigan peninsula (USA). Various wild carnivores and omnivores, including raccoons (Procyon lotor), are infected with M. bovis within the endemic area. To investigate the pathogenesis of tuberculosis in raccoons and the likelihood of M. bovis transmission from infected raccoons to other susceptible hosts, we experimentally inoculated raccoons with single oral doses of M. bovis (ranging from 30 to 1.7 x 105 colony forming units [CFU]), five daily oral doses of M. bovis (ranging from 10 to 1 x 105 CFU), or a single intravenous (IV) dose of 1 x 105 CFU of M. bovis, from November 1998 through December 2000. Granulomatous lesions consistent with tuberculosis, or tissue colonization with M. bovis, were seen in one of five raccoons in the single low oral dose group, one of five raccoons in the multiple low oral dose group, two of five raccoons in the multiple medium oral dose group, five of five raccoons in the multiple high oral dose group, and five of five raccoons in the IV inoculated group. In orally inoculated raccoons, lesions were most common in the tracheobronchial and mesenteric lymph nodes and lung. Excretion of M. bovis in saliva or nasal secretions was noted in all IV inoculated raccoons and two of five multiple low oral dose raccoons. Mycobacterium bovis was not isolated from urine or feces from any experimentally inoculated raccoons. The need for multiple large oral doses to establish infection, and the low number of orally inoculated raccoons that excreted M. bovis in nasal secretions or saliva, suggest that widespread tuberculosis among raccoons is unlikely.
Resumo:
Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer. Animals—Twenty-three 6-month-old white-tailed deer. Procedure—On day 0, M bovis (2 X 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis. Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed. Conclusions and Clinical Relevance—Mycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis.
Resumo:
Chronic wasting disease (CWD) has become a concern for wildlife managers and hunters across the United States. High prevalence of chronic wasting disease (CWD) in older male white-tailed deer (Odocoileus virginianus) suggests that sex-specific social behavior may contribute to the spread of the disease among males. Scraping is a marking behavior performed by male white-tailed deer during the rut in which a pawed depression and associated over-hanging branch are marked with saliva, glandular secretions, urine, and feces. We placed 71 and 35 motion-activated cameras on scrapes in DeSoto National Wildlife Refuge in western Nebraska and eastern Iowa from Oct. – Nov. 2005 and Sept. – Nov. 2006, respectively. We recorded 5009 encounters and 1830 direct interactions. We developed an ethogram of behaviors of interest at scrapes. We found that males interacted with scrapes more frequently than females (P < 0.001). Male interactions were more complex, with 69% consisting of ≥2 observed behaviors versus 25% and 13% for females and fawns. We identified individual male deer ≥2.5 years old and determined the minimum number of different scrapes individuals visited and the number of individuals that visit a single scrape. Individuals that appeared on camera ≥5 times visited a mean of 3.9 scrapes (range = 1-15) and traveled a mean minimum distance of 978 m between consecutive scrapes. A mean of 5.1 individuals visited a single scrape, and up to 43% of individuals returned to a scrape previously visited at least once. We modeled Risk Values based on frequency of occurrence, duration, and Threat Values of each behavior, for contacting and transmitting CWD prions at scrapes. Adult males had the highest total Risk Values for contacting CWD prions (114.1) and shedding prions (59.4). The “grasp-lick branch” behavior had the highest Risk Value for adult males for both contacting and transmitting prions. Our study reveals a sex specific social behavior in male white-tailed deer that has the potential to spread chronic wasting disease between adult males in the population.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.