963 resultados para Blood carbon monoxide levels.
Resumo:
The Spanish NGO "Alianza por la Solidaridad" has installed improved cookstoves in 3000 households during 2012 and 2013 to improve energy efficiency reducing fuelwood consumption and to improve in-door air quality. The type of cookstoves were Noflaye Jeeg and Noflaye Jaboot and were installed in the Cassamance Natural Subregion covering part of Senegal, The Gambia and Guinea-Bissau. The Technical University of Madrid (UPM) has conducted a field study on a sample of these households to assess the effect of improved cookstoves on kitchen air quality. Measurements of carbon monoxide (CO) and fine particle matter (PM2.5) were taken for 24-hr period before and after the installation of improved cook-stoves. The 24-hr mean CO concentrations were lower than the World Health Organization (WHO) guidelines for Guinea-Bissau but higher for Senegal and Gambia, even after the installation of improved cookstoves. As for PM2.5 concentrations, 24-hr mean were always higher than these guidelines. However, improved cookstoves produced significant reductions on 24-hr mean CO and PM2.5 concentrations in Senegal and for mean and maximum PM2.5 concentration on Gambia. Although this variability needs to be explained by further research to determine which other factors could affect indoor air pollution, the study provided a better understanding of the problem and envisaged alternatives to be implemented in fu-ture phases of the NGO project.
Resumo:
In the intricate maturation process of [NiFe]-hydrogenases, the Fe(CN)2CO cofactor is first assembled in a HypCD complex with iron coordinated by cysteines from both proteins and CO is added after ligation of cyanides. The small accessory protein HypC is known to play a role in delivering the cofactor needed for assembling the hydrogenase active site. However, the chemical nature of the Fe(CN)2CO moiety and the stability of the cofactor–HypC complex are open questions. In this work, we address geometries, properties, and the nature of bonding of all chemical species involved in formation and binding of the cofactor by means of quantum calculations. We also study the influence of environmental effects and binding to cysteines on vibrational frequencies of stretching modes of CO and CN used to detect the presence of Fe(CN)2CO. Carbon monoxide is found to be much more sensitive to sulfur binding and the polarity of the medium than cyanides. The stability of the HypC–cofactor complex is analyzed by means of molecular dynamics simulation of cofactor-free and cofactor-bound forms of HypC. The results show that HypC is stable enough to carry the cofactor, but since its binding cysteine is located at the N-terminal unstructured tail, it presents large motions in solution, which suggests the need for a guiding interaction to achieve delivery of the cofactor.
Resumo:
The Spanish NGO "Alianza por la Solidaridad" has installed improved cookstoves in 3000 households during 2012 and 2013 to improve energy efficiency reducing fuelwood consumption and to improve indoor air quality. The type of cookstoves were Noflaye Jeeg and Noflaye Jaboot and were installed in the Cassamance Natural Subregion covering part of Senegal, The Gambia and Guinea-Bissau. The Technical University of Madrid (UPM) has conducted a field study on a sample of these households to assess the effect of improved cookstoves on kitchen air quality. Measurements of carbon monoxide (CO) and fine particle matter (PM2.5) were taken for 24-hr period before and after the installation of improved cookstoves. The 24-hr mean CO concentrations were lower than the World Health Organization (WHO) guidelines for Guinea-Bissau but higher for Senegal and Gambia, even after the installation of improved cookstoves. As for PM2.5 concentrations, 24-hr mean were always higher than these guidelines. However, improved cookstoves produced significant reductions on 24-hr mean CO and PM2.5 concentrations in Senegal and for mean and maximum PM2.5 concentration on Gambia. Although this variability needs to be explained by further research to determine which other factors could affect indoor air pollution, the study provided a better understanding of the problem and envisaged alternatives to be implemented in future phases of the NGO project.
Resumo:
We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.
Resumo:
Stressed mammalian cells up-regulate heme oxygenase 1 (Hmox1; EC 1.14.99.3), which catabolizes heme to biliverdin, carbon monoxide, and free iron. To assess the potential role of Hmox1 in cellular antioxidant defense, we analyzed the responses of cells from mice lacking functional Hmox1 to oxidative challenges. Cultured Hmox1−/− embryonic fibroblasts demonstrated high oxygen free radical production when exposed to hemin, hydrogen peroxide, paraquat, or cadmium chloride, and they were hypersensitive to cytotoxicity caused by hemin and hydrogen peroxide. Furthermore, young adult Hmox1−/− mice were vulnerable to mortality and hepatic necrosis when challenged with endotoxin. Our in vitro and in vivo results provide genetic evidence that up-regulation of Hmox1 serves as an adaptive mechanism to protect cells from oxidative damage during stress.
Resumo:
Interaction of the two high-spin hemes in the oxygen reduction site of the bd-type quinol oxidase from Escherichia coli has been studied by femtosecond multicolor transient absorption spectroscopy. The previously unidentified Soret band of ferrous heme b595 was determined to be centered around 440 nm by selective excitation of the fully reduced unliganded or CO-bound cytochrome bd in the α-band of heme b595. The redox state of the b-type hemes strongly affects both the line shape and the kinetics of the absorption changes induced by photodissociation of CO from heme d. In the reduced enzyme, CO photodissociation from heme d perturbs the spectrum of ferrous cytochrome b595 within a few ps, pointing to a direct interaction between hemes b595 and d. Whereas in the reduced enzyme no heme d-CO geminate recombination is observed, in the mixed-valence CO-liganded complex with heme b595 initially oxidized, a significant part of photodissociated CO does not leave the protein and recombines with heme d within a few hundred ps. This caging effect may indicate that ferrous heme b595 provides a transient binding site for carbon monoxide within one of the routes by which the dissociated ligand leaves the protein. Taken together, the data indicate physical proximity of the hemes d and b595 and corroborate the possibility of a functional cooperation between the two hemes in the dioxygen-reducing center of cytochrome bd.
Resumo:
Heme oxygenase (HO) catalyzes the conversion of heme to carbon monoxide, iron, and biliverdin, which is immediately reduced to bilirubin (BR). Two HO active isozymes exist: HO1, an inducible heat shock protein, and HO2, which is constitutive and highly concentrated in neurons. We demonstrate a neuroprotective role for BR formed from HO2. Neurotoxicity elicited by hydrogen peroxide in hippocampal and cortical neuronal cultures is prevented by the phorbol ester, phorbol 12-myristate 13-acetate (PMA) via stimulation of protein kinase C. We observe phosphorylation of HO2 through the protein kinase C pathway with enhancement of HO2 catalytic activity and accumulation of BR in neuronal cultures. The neuroprotective effects of PMA are prevented by the HO inhibitor tin protoporphyrin IX and in cultures from mice with deletion of HO2 gene. Moreover, BR, an antioxidant, is neuroprotective at nanomolar concentrations.
Resumo:
Compared with free heme, the proteins hemoglobin (Hb) and myoglobin (Mb) exhibit greatly enhanced affinity for oxygen relative to carbon monoxide. This physiologically vital property has been attributed to either steric hindrance of CO or stabilization of O2 binding by a hydrogen bond with the distal histidine. We report here the first direct evidence of such a hydrogen bond in both α- and β-chains of oxyhemoglobin, as revealed by heteronuclear NMR spectra of chain-selectively labeled samples. Using these spectra, we have assigned the imidazole ring 1H and 15N chemical shifts of the proximal and distal histidines in both carbonmonoxy- and oxy-Hb. Because of their proximity to the heme, these chemical shifts are extremely sensitive to the heme pocket conformation. Comparison of the measured chemical shifts with values predicted from x-ray structures suggests differences between the solution and crystal structures of oxy-Hb. The chemical shift discrepancies could be accounted for by very small displacements of the proximal and distal histidines. This suggests that NMR could be used to obtain very high-resolution heme pocket structures of Hb, Mb, and other heme proteins.
Resumo:
Studies of initial activities of carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum show that CODH is mostly inactive at redox potentials higher than −300 mV. Initial activities measured at a wide range of redox potentials (0–500 mV) fit a function corresponding to the Nernst equation with a midpoint potential of −316 mV. Previously, extensive EPR studies of CODH have suggested that CODH has three distinct redox states: (i) a spin-coupled state at −60 to −300 mV that gives rise to an EPR signal termed Cred1; (ii) uncoupled states at <−320 mV in the absence of CO2 referred to as Cunc; and (iii) another spin-coupled state at <−320 mV in the presence of CO2 that gives rise to an EPR signal termed Cred2B. Because there is no initial CODH activity at potentials that give rise to Cred1, the state (Cred1) is not involved in the catalytic mechanism of this enzyme. At potentials more positive than −380 mV, CODH recovers its full activity over time when incubated with CO. This reductant-dependent conversion of CODH from an inactive to an active form is referred to hereafter as “autocatalysis.” Analyses of the autocatalytic activation process of CODH suggest that the autocatalysis is initiated by a small fraction of activated CODH; the small fraction of active CODH catalyzes CO oxidation and consequently lowers the redox potential of the assay system. This process is accelerated with time because of accumulation of the active enzyme.
Resumo:
Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.
Resumo:
The x-ray structure of carbon monoxide (CO)-ligated myoglobin illuminated during data collection by a laser diode at the wavelength lambda = 690 nm has been determined to a resolution of 1.7 A at T = 36 K. For comparison, we also measured data sets of deoxymyoglobin and CO-ligated myoglobin. In the photon-induced structure the electron density associated with the CO ligand can be described by a tube extending from the iron into the heme pocket over more than 4 A. This density can be interpreted by two discrete positions of the CO molecule. One is close to the heme iron and can be identified to be bound CO. In the second, the CO is dissociated from the heme iron and lies on top of pyrrole ring C. At our experimental conditions the overall structure of myoglobin in the metastable state is close to the structure of a CO-ligated molecule. However, the iron has essentially relaxed into the position of deoxymyoglobin. We compare our results with those of Schlichting el al. [Schlichting, I., Berendzen, J., Phillips, G. N., Jr., & Sweet, R. M. (1994) Nature 317, 808-812], who worked with the myoglobin mutant (D122N) that crystallizes in the space group P6 and Teng et al. [Teng, T. Y., Srajer, V. & Moffat, K. (1994) Nat. Struct. Biol. 1, 701-705], who used native myoglobin crystals of the space group P2(1). Possible reasons for the structural differences are discussed.
Resumo:
An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 microM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.
Resumo:
Nanopartículas bimetálicas de AuPd têm mostrado excelente atividade catalítica em reações de oxidação. O entendimento dos efeitos da variação da composição e morfologia das nanopartículas bimetálicas em suas propriedades catalíticas é fundamental para a preparação de catalisadores cada vez mais ativos e seletivos. Neste trabalho foram estudadas nanopartículas bimetálicas de AuPd de composição variável suportadas sobre um suporte constituído por nanopartículas de magnetita revestidas por sílica. O efeito da calcinação e da redução com hidrogênio sobre a morfologia e composição das nanopartículas bimetálicas foi acompanhado pelas técnicas de TEM, XEDS, XAS, XRD e XPS. A correlação entre estrutura, composição e atividade catalítica dos catalisadores preparados foi estudada pelo acompanhamento de reações de oxidação de monóxido de carbono e de oxidação de álcool benzílico. As amostras não calcinadas apresentaram segregação metálica em todas as composições estudadas. Após a etapa de calcinação, maior segregação metálica foi encontrada, com a formação de óxido de paládio na superfície das nanopartículas, exceto na amostra mais rica em ouro. O tratamento das amostras oxidadas com hidrogênio foi capaz de reduzir os metais oxidados na superfície das nanopartículas, mas um enriquecimento em paládio na superfície e maior segregação entre ouro e paládio foram observados. Uma melhora na atividade catalítica na oxidação de monóxido de carbono foi observada juntamente com um aumento na composição de paládio, além disso, observou-se uma maior atividade catalítica em relação às nanopartículas não calcinadas para as amostras calcinadas e reduzidas. Para a oxidação de álcool benzílico um aumento na atividade catalítica de até cinco vezes foi observado após a calcinação dos catalisadores, com maior atividade para a amostra de composição Au1Pd2. A queda na atividade catalítica após a redução dos catalisadores mostrou que a presença de óxido de paládio na superfície das nanopartículas é fundamental para que seja observada uma maior atividade catalítica.