874 resultados para Blends and mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarthritis (OA) is a debilitating disease that is becoming more prevalent in today’s society. OA affects approximately 28 million adults in the United States alone and when present in the knee joint, usually leads to a total knee replacement. Numerous studies have been conducted to determine possible methods to halt the initiation of OA, but the structural integrity of the menisci has been shown have a direct effect on the progression of OA. Menisci are two C-shaped structures that are attached to the tibial plateau and aid in facilitating proper load transmission within the knee. The meniscal cross-section is wedge-like to fit the contour of the femoral condyles and help attenuate stresses on the tibial plateau. While meniscal tears are common, only the outer 1/3 of the meniscus is vascularized and has the capacity to heal, hence tears of the inner 2/3rds are generally treated via meniscectomy, leading to OA. To help combat this OA epidemic, an effective biomimetric meniscal replacement is needed. Numerous mechanical and biochemical studies have been conducted on the human meniscus, but very little is known about the mechanical properties on the nano-scale and how meniscal constituents are distributed in the meniscal cross-section. The regional (anterior, central and posterior) nano-mechanical properties of the meniscal superficial layers (both tibial and femoral contacting) and meniscal deep zone were investigated via nanoindentation to examine the regional inhomogeneity of both the lateral and medial menisci. Additionally, these results were compared to quantitative histological values to better formulate a structure-function relationship on the nano-scale. These data will prove imperative for further advancements of a tissue engineered meniscal replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Si and cooling rate are investigated for their effect on the mechanical properties and microstructure. Three alloys were chosen with varying C and Si contents and an attempt to keep the remainder of the elements present constant. Within each heat, three test blocks were poured. Two blocks had chills – one with a fluid flowing through it to cool it (active chill) and one without the fluid (passive) – and the third block did not have a chill. Cooling curves were gathered and analyzed. The mechanical properties of the castings were correlated to the microstructure, cooling rate and Si content of each block. It was found that an increase in Si content increased the yield stress, tensile strength and hardness but decreased the impact toughness, elongation and Young’s modulus. The fast cooling rates produced by the chills caused a high nodule count in the castings along with a fine ferrite grain size and a high degree of nodularity. The fine microstructures, in turn, increased the strength and ductile to brittle transition temperature (DBTT) of the castings. The fast cooling rate was not adequate to overcome the dramatic increase in DBTT that is caused by the addition of Si.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES The purpose of this study was to compare the mechanical, structural, and aesthetic properties of two types of aesthetic coated nickel-titanium (NiTi) wires compared with comparable regular NiTi wires in the as-received state and after clinical use. MATERIALS/METHODS Sixty one subjects were randomly assigned to four groups (N = 61), two groups of coated wires and two groups of comparable, non-coated controls (n = 15/group). The period in the mouth ranged from 4 to 12 weeks after insertion. In total, 121 wires (61 retrieved and 60 as-received) were used in the study. The percentages of coating retention and loss were extrapolated from scans. A brief survey of five questions with three choices was given to all patients. Differential scanning calorimetry (DSC) and three-point bending tests were done on as-received and used wires. RESULTS The surface characterization by the percentage of resin remaining indicated that most wires in both test groups lost a significant amount of coating. A patient survey indicated that this was a noticeable feature for patients. DSC analysis of the wires indicated that the metallurgical properties of the coated wires were not similar to the uncoated wires in the as-received condition. Three-point bending results indicate a wide variation in test results with large standard deviations among all the groups. LIMITATIONS The extent of coating loss requires investigating, as do the biological properties of the detached coating. CONCLUSIONS Both wires lost a significant amount of aesthetic coating after varying periods in the mouth. The metallurgical testing of these findings may indicate that these wires perform differently in the mouth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From laboratory tests under simulated downhole conditions we tentatively conclude that the higher the triaxial-compressive strength, the lower the drilling rate of basalts from DSDP Hole 504B. Because strength is roughly proportional to Young's modulus of elasticity, which is related in turn to seismic-wave velocities, one may be able to estimate drilling rates from routine shipboard measurements. However, further research is needed to verify that P-wave velocity is a generally useful predictor of relative drilling rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favourable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost and the full square-shape of the multicrystalline ones. However, the quasi-mono ingot growth can lead to a different defect structure than the typical Cz-Si process. Thus, the properties of the brand-new quasi-mono wafers, from a mechanical point of view, have been for the first time studied, comparing their strength with that of both Cz-Si mono and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three-parameter Weibull distribution. High mechanical strength was found in all the cases. The low quality quasi-mono wafers, interestingly, did not exhibit critical strength values for the PV industry, despite their noticeable density of extended defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.