846 resultados para Bit error rate
Resumo:
We have developed two reduced complexity bit-allocation algorithms for MP3/AAC based audio encoding, which can be useful at low bit-rates. One algorithm derives optimum bit-allocation using constrained optimization of weighted noise-to-mask ratio and the second algorithm uses decoupled iterations for distortion control and rate control, with convergence criteria. MUSHRA based evaluation indicated that the new algorithm would be comparable to AAC but requiring only about 1/10 th the complexity.
Resumo:
The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, mu(c), however, is not known. Application of the quasispecies theory to determine mu(c) poses significant challenges: Whereas the quasispecies theory considers the asexual reproduction of an infinitely large population of haploid individuals, HIV-1 is diploid, undergoes recombination, and is estimated to have a small effective population size in vivo. We performed population genetics-based stochastic simulations of the within-host evolution of HIV-1 and estimated the structure of the HIV-1 quasispecies and mu(c). We found that with small mutation rates, the quasispecies was dominated by genomes with few mutations. Upon increasing the mutation rate, a sharp error catastrophe occurred where the quasispecies became delocalized in sequence space. Using parameter values that quantitatively captured data of viral diversification in HIV-1 patients, we estimated mu(c) to be 7 x 10(-5) -1 x 10(-4) substitutions/site/replication, similar to 2-6 fold higher than the natural mutation rate of HIV-1, suggesting that HIV-1 survives close to its error threshold and may be readily susceptible to mutagenic drugs. The latter estimate was weakly dependent on the within-host effective population size of HIV-1. With large population sizes and in the absence of recombination, our simulations converged to the quasispecies theory, bridging the gap between quasispecies theory and population genetics-based approaches to describing HIV-1 evolution. Further, mu(c) increased with the recombination rate, rendering HIV-1 less susceptible to error catastrophe, thus elucidating an added benefit of recombination to HIV-1. Our estimate of mu(c) may serve as a quantitative guideline for the use of mutagenic drugs against HIV-1.
Resumo:
We consider a complex, additive, white Gaussian noise channel with flat fading. We study its diversity order vs transmission rate for some known power allocation schemes. The capacity region is divided into three regions. For one power allocation scheme, the diversity order is exponential throughout the capacity region. For selective channel inversion (SCI) scheme, the diversity order is exponential in low and high rate region but polynomial in mid rate region. For fast fading case we also provide a new upper bound on block error probability and a power allocation scheme that minimizes it. The diversity order behaviour of this scheme is same as for SCI but provides lower BER than the other policies.
Resumo:
We study the tradeoff between the average error probability and the average queueing delay of messages which randomly arrive to the transmitter of a point-to-point discrete memoryless channel that uses variable rate fixed codeword length random coding. Bounds to the exponential decay rate of the average error probability with average queueing delay in the regime of large average delay are obtained. Upper and lower bounds to the optimal average delay for a given average error probability constraint are presented. We then formulate a constrained Markov decision problem for characterizing the rate of transmission as a function of queue size given an average error probability constraint. Using a Lagrange multiplier the constrained Markov decision problem is then converted to a problem of minimizing the average cost for a Markov decision problem. A simple heuristic policy is proposed which approximately achieves the optimal average cost.
Resumo:
It is well known that extremely long low-density parity-check (LDPC) codes perform exceptionally well for error correction applications, short-length codes are preferable in practical applications. However, short-length LDPC codes suffer from performance degradation owing to graph-based impairments such as short cycles, trapping sets and stopping sets and so on in the bipartite graph of the LDPC matrix. In particular, performance degradation at moderate to high E-b/N-0 is caused by the oscillations in bit node a posteriori probabilities induced by short cycles and trapping sets in bipartite graphs. In this study, a computationally efficient algorithm is proposed to improve the performance of short-length LDPC codes at moderate to high E-b/N-0. This algorithm makes use of the information generated by the belief propagation (BP) algorithm in previous iterations before a decoding failure occurs. Using this information, a reliability-based estimation is performed on each bit node to supplement the BP algorithm. The proposed algorithm gives an appreciable coding gain as compared with BP decoding for LDPC codes of a code rate equal to or less than 1/2 rate coding. The coding gains are modest to significant in the case of optimised (for bipartite graph conditioning) regular LDPC codes, whereas the coding gains are huge in the case of unoptimised codes. Hence, this algorithm is useful for relaxing some stringent constraints on the graphical structure of the LDPC code and for developing hardware-friendly designs.
Resumo:
Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.
Resumo:
A Finite Feedback Scheme (FFS) for a quasi-static MIMO block fading channel with finite N-ary delay-free noise-free feedback consists of N Space-Time Block Codes (STBCs) at the transmitter, one corresponding to each possible value of feedback, and a function at the receiver that generates N-ary feedback. A number of FFSs are available in the literature that provably attain full-diversity. However, there is no known full-diversity criterion that universally applies to all FFSs. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, and based on this criterion the notion of Feedback-Transmission duration optimal (FT-optimal) FFSs is introduced, which are schemes that use minimum amount of feedback N for the given transmission duration T, and minimum T for the given N to achieve full-diversity. When there is no feedback (N = 1) an FT-optimal scheme consists of a single STBC, and the proposed condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity. Also, a sufficient criterion for full-diversity is given for FFSs in which the component STBC yielding the largest minimum Euclidean distance is chosen, using which full-rate (N-t complex symbols per channel use) full-diversity FT-optimal schemes are constructed for all N-t > 1. These are the first full-rate full-diversity FFSs reported in the literature for T < N-t. Simulation results show that the new schemes have the best error performance among all known FFSs.
Resumo:
We study the diversity order vs rate of an additive white Gaussian noise (AWGN) channel in the whole capacity region. We show that for discrete input as well as for continuous input, Gallager's upper bounds on error probability have exponential diversity in low and high rate region but only subexponential in the mid-rate region. For the best available lower bounds and for the practical codes one observes exponential diversity throughout the capacity region. However we also show that performance of practical codes is close to Gallager's upper bounds and the mid-rate subexponential diversity has a bearing on the performance of the practical codes. Finally we show that the upper bounds with Gaussian input provide good approximation throughout the capacity region even for finite constellation.
Resumo:
In this work, we consider two-dimensional (2-D) binary channels in which the 2-D error patterns are constrained so that errors cannot occur in adjacent horizontal or vertical positions. We consider probabilistic and combinatorial models for such channels. A probabilistic model is obtained from a 2-D random field defined by Roth, Siegel and Wolf (2001). Based on the conjectured ergodicity of this random field, we obtain an expression for the capacity of the 2-D non-adjacent-errors channel. We also derive an upper bound for the asymptotic coding rate in the combinatorial model.
Resumo:
We address the problem of parameter estimation of an ellipse from a limited number of samples. We develop a new approach for solving the ellipse fitting problem by showing that the x and y coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals. Uniform samples of x and y coordinate functions of the ellipse are modeled as a sum of weighted complex exponentials, for which we propose an efficient annihilating filter technique to estimate the ellipse parameters from the samples. The FRI framework allows for estimating the ellipse parameters reliably from partial or incomplete measurements even in the presence of noise. The efficiency and robustness of the proposed method is compared with state-of-art direct method. The experimental results show that the estimated parameters have lesser bias compared with the direct method and the estimation error is reduced by 5-10 dB relative to the direct method.
Resumo:
A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.