905 resultados para Bird, Lester
Resumo:
"March 1996"--P. iii.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The founding of new populations by small numbers of colonists has been considered a potentially important mechanism promoting evolutionary change in island populations. Colonizing species, such as members of the avian species complex Zosterops lateralis, have been used to support this idea. A large amount of background information on recent colonization history is available for one Zosterops subspecies, Z. lateralis lateralis, providing the opportunity to reconstruct the population dynamics of its colonization sequence. We used a Bayesian approach to combine historical and demographic information available on Z. l. lateralis with genotypic data from six microsatellite loci, and a rejection algorithm to make simultaneous inferences on the demographic parameters describing the recent colonization history of this subspecies in four southwest Pacific islands. Demographic models assuming mutation–drift equilibrium or a large number of founders were better supported than models assuming founder events for three of four recently colonized island populations. Posterior distributions of demographic parameters supported (i) a large stable effective population size of several thousands individuals with point estimates around 4000–5000; (ii) a founder event of very low intensity with a large effective number of founders around 150–200 individuals for each island in three of four islands, suggesting the colonization of those islands by one flock of large size or several flocks of average size; and (iii) a founder event of higher intensity on Norfolk Island with an effective number of founders around 20 individuals, suggesting colonization by a single flock of moderate size. Our inferences on demographic parameters, especially those on the number of founders, were relatively insensitive to the precise choice of prior distributions for microsatellite mutation processes and demographic parameters, suggesting that our analysis provides a robust description of the recent colonization history of the subspecies.
Resumo:
Differences between island- and mainland-dwelling forms provide several classic ecological puzzles. Why, for instance, are island-dwelling passerine birds consistently larger than their mainland counterparts? We examine the 'Dominance hypothesis', based on intraspecific competition, which states that large size in island passerines evolves through selection for success in agonistic encounters. We use the Heron Island population of Capricorn silvereyes (Zosterops lateralis chlorocephalus), a large-bodied island-dwelling race of white-eye (Zosteropidae), to test three assumptions of this hypothesis; that (i) large size is positively associated with high fitness, (ii) large size is associated with dominance, and (iii) the relationship between size and dominance is particularly pronounced under extreme intraspecific competition. Our results supported the first two of these assumptions, but provided mixed evidence on the third. On balance, we suggest that the Dominance Hypothesis is a plausible mechanism for the evolution of large size of island passerines, but urge further empirical tests on the role of intraspecific competition on oceanic islands versus that on mainlands.
Resumo:
With respect to its avian migrants, Australo-Papua is a largely self-contained region. Only some 30 species of shorebird and 10 species of land bird migrate from Asia to Australo-Papua to winter. Possible factors precluding migration of Asian birds include long over-water distances and lack of suitable habitats in Australia or New Guinea. Whether evolved within the region or descended from Asian relatives, Australasian species all confine their migratory movements east of Wallace's Line. The most likely factors restricting migration to the region are climate and habitat. The open forests and arid habitats of Australasia are absent from south-east Asia, so there is little, if any, selection promoting extra-regional migration. The arid or semi-arid but otherwise mild climates of much of Australia favour partial migration and widely varying movement patterns and pathways, although with an underlying north to south component. Movements also occur between mainland Australia and New Guinea and Tasmania. The restriction of migration within Australo-Papua and the high variability of migratory pathways have important implications for the ecology and evolution of the Australasian avifauna.
Resumo:
To our knowledge, there is, so far, no evidence that incubation temperature can affect sex ratios in birds, although this is common in reptiles. Here, we show that incubation temperature does affect sex ratios in megapodes, which are exceptional among birds because they use environmental heat sources for incubation. In the Australian brush-turkey Alectura lathami, a mound-building megapode, more males hatch at low incubation temperatures and more females hatch at high temperatures, whereas the proportion is 1 : 1 at the average temperature found in natural mounds. Chicks from lower temperatures weigh less, which probably affects offspring survival, but are not smaller. Megapodes possess heteromorphic sex chromosomes like other birds, which eliminates temperature-dependent sex determination, as described for reptiles, as the mechanism behind the skewed sex ratios at high and low temperatures. Instead, our data suggest a sex-biased temperature-sensitive embryo mortality because mortality was greater at the lower and higher temperatures, and minimal at the middle temperature where the sex ratio was 1 : 1.
Resumo:
We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.
Resumo:
Microspectrophotometric examination of the retina of a procellariiform marine bird, the wedge-tailed shearwater Puffinus pacificus, revealed the presence of five different types of vitamin A(1)-based visual pigment in seven different types of photoreceptor. A single class of rod contained a medium-wavelength sensitive visual pigment with a wavelength of maximum absorbance (lambda(max)) at 502 nm. Four different types of single cone contained visual pigments maximally sensitive in either the violet (VS, lambda(max) 406 nm), short (SWS, lambda(max) 450 nm), medium (MWS, lambda(max) 503 nm) or long (LWS, lambda(max) 566 nm) spectral ranges. In the peripheral retina, the SWS, MWS and LWS single cones contained pigmented oil droplets in their inner segments with cut-off wavelengths (lambda(cut)) at 445 (C-type), 506 (Y-type) and 562 nm (R-type), respectively. The VS visual pigment was paired with a transparent (T-type) oil droplet that displayed no significant absorption above at least 370 run. Both the principal and accessory members of the double cone pair contained the same 566 nm lambda(max) visual pigment as the LWS single cones but only the principal member contained an oil droplet, which had a lambda(cut) at 413 nm. The retina had a horizontal band or 'visual streak' of increased photoreceptor density running across the retina approximately 1.5 mm dorsal to the top of the pecten. Cones in the centre of the horizontal streak were smaller and had oil droplets that were either transparent/colourless or much less pigmented than at the periphery. It is proposed that the reduction in cone oil droplet pigmentation in retinal areas associated with high visual acuity is an adaptation to compensate for the reduced photon capture ability of the narrower photoreceptors found there. Measurements of the spectral transmittance of the ocular media reveal that wavelengths down to at least 300 nm would be transmitted to the retina.
Resumo:
Many studies on birds focus on the collection of data through an experimental design, suitable for investigation in a classical analysis of variance (ANOVA) framework. Although many findings are confirmed by one or more experts, expert information is rarely used in conjunction with the survey data to enhance the explanatory and predictive power of the model. We explore this neglected aspect of ecological modelling through a study on Australian woodland birds, focusing on the potential impact of different intensities of commercial cattle grazing on bird density in woodland habitat. We examine a number of Bayesian hierarchical random effects models, which cater for overdispersion and a high frequency of zeros in the data using WinBUGS and explore the variation between and within different grazing regimes and species. The impact and value of expert information is investigated through the inclusion of priors that reflect the experience of 20 experts in the field of bird responses to disturbance. Results indicate that expert information moderates the survey data, especially in situations where there are little or no data. When experts agreed, credible intervals for predictions were tightened considerably. When experts failed to agree, results were similar to those evaluated in the absence of expert information. Overall, we found that without expert opinion our knowledge was quite weak. The fact that the survey data is quite consistent, in general, with expert opinion shows that we do know something about birds and grazing and we could learn a lot faster if we used this approach more in ecology, where data are scarce. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (lambda(max)) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (lambda(cut)) of their respective C-, Y- and R-type oil droplets can be predicted from the lambda(max) of the ultraviolet- (UVS)/violet- ( VS) sensitive visual pigment.
Resumo:
Australian wet forests have undergone a contraction in range since the mid-Tertiary, resulting in a fragmented distribution along the east Australian coast incorporating several biogeographical barriers. Variation in mitochondrial DNA and morphology within the satin bowerbird was used to examine biogeographical structure throughout almost the entire geographical extent of these wet forest fragments. We used several genetic analysis techniques, nested clade and barrier analyses, that use patterns inherent in the data to describe the spatial structuring. We also examined the validity of the two previously described satin bowerbird subspecies that are separated by well-defined biogeographical barriers and tested existing hypotheses that propose divergence occurs within each subspecies across two other barriers, the Black Mountain corridor and the Hunter Valley. Our data showed that the two subspecies were genetically and morphologically divergent. The northern subspecies, found in the Wet Tropics region of Queensland, showed little divergence across the Black Mountain corridor, a barrier found to be significant in other Wet Tropics species. Biogeographical structure was found through southeastern Australia; three geographically isolated populations showed genetic differentiation, although minimal divergence was found across the proposed Hunter Valley barrier. A novel barrier was found separating inland and coastal populations in southern New South Wales. Little morphological divergence was observed within subspecies, bar a trend for birds to be larger in the more southerly parts of the species' range. The results from both novel and well-established genetic analyses were similar, providing greater confidence in the conclusions about spatial divergence and supporting the validity of these new techniques.
Resumo:
Geographic variation in vocalizations is widespread in passerine birds, but its origins and maintenance remain unclear. One hypothesis to explain this variation is that it is associated with geographic isolation among populations and therefore should follow a vicariant pattern similar to that typically found in neutral genetic markers. Alternatively, if environmental selection strongly influences vocalizations, then genetic divergence and vocal divergence may be disassociated. This study compared genetic divergence derived from 11 microsatellite markers with a metric of phenotypic divergence derived from male bower advertisement calls. Data were obtained from 16 populations throughout the entire distribution of the satin bowerbird, an Australian wet-forest-restricted passerine. There was no relationship between call divergence and genetic divergence, similar to most other studies on birds with learned vocalizations. Genetic divergence followed a vicariant model of evolution, with the differentiation of isolated populations and isolation-by-distance among continuous populations. Previous work on Ptilonorhynchus violaceus has shown that advertisement call structure is strongly influenced by the acoustic environment of different habitats. Divergence in vocalizations among genetically related populations in different habitats indicates that satin bowerbirds match their vocalizations to the environment in which they live, despite the homogenizing influence of gene flow. In combination with convergence of vocalizations among genetically divergent populations occurring in the same habitat, this shows the overriding importance that habitat-related selection can have on the establishment and maintenance of variation in vocalizations.