960 resultados para Biogeochemistry of trace metal
Resumo:
Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.
Resumo:
Trace fossils and ichnofabric were examined from cores of Late Cretaceous to Quaternary age recovered from the Kerguelen Plateau, Indian Ocean. Nearly all of the strata are completely bioturbated, with ichnofabric index 6 most commonly recorded. Preserved discrete trace fossils include Chondrites, Planolites, Zoophycos, and Thalassinoides. A continuous Cretaceous/Tertiary boundary section preserved at ODP Site 738 occurs within a 15-cm-thick interval of laminated sediments. The lack of bioturbation indicates the disappearance of bioturbating organisms from the seafloor, possibly as a result of the same factors that caused the mass extinction or changes in other environmental conditions - most probably, bottom-water oxygen concentrations.
Resumo:
The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1-7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC >7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in d98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean d98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environments.
Resumo:
With a view to more complete understanding of the role of phyto- and zooplankton in biogeochemical cycles, spatial distributions of Fe, Mn, Co, Ni, Cr, Cu, Cd, Pb, Zn, As, Hg, and Corg in the White Sea seston (21 samples) collected in August 2004 during Cruise 64 of R/V ''Professor Shtokman'' were studied. It was shown that the elements in study are accumulated in plankton with enrichment factors from 10**2 for Hg to 10**5 for Fe, as compared to seawater. Spatial distribution of trace elements is determined by sources of their supply and correlates with distribution of primary production and biomass of zooplankton. Increased values of trace element contents (excluding As) are characteristic of the Dvina Bay, whereas the highest As concentrations were found in the Kandalaksha Bay.