890 resultados para Biogeochemistry|Analytical chemistry|Environmental science
Resumo:
Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF6] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF6] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.
Resumo:
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Resumo:
The influence of storage time and temperature on Sb migration from PET bottles into mineral water was studied in short-term tests lasting up to 15 days and long-term studies lasting up to 220 days. Samples purchased were stored in three different coloured bottles: clear (CL), light blue (LB) and dark blue (DB). Sb migration was assayed by HG-AFS for total determination and HPLC-ICP-MS for speciation analysis. Migration studies showed that waters stored at 4 and 20 oC were not subject to Sb migration. At 40 oC there was a significant increase in Sb concentration, although the maximum limit established by the European Union (5.0 ug/L) was not exceeded, whereas at 60 oC samples were subject to considerable Sb migration after 30 days of storage. In this case, the maximum limit established by the European Union was exceeded and both Sb (V) and Sb (III) were detected.
Resumo:
This paper reports the method development for the simultaneous determination of methylmercury MeHgþ) and inorganic mercury (iHg) species in seafood samples. The study focused on the extraction and quantification of MeHgþ (the most toxic species) by liquid chromatography coupled to on-line UV irradiation and cold vapour atomic fluorescence spectroscopy (LC-UV-CV-AFS), using HCl 4 mol/L as the extractant agent. Accuracy of the method has been verified by analysing three certified reference materials and different spiked samples. The values found for total Hg and MeHgþ for the CRMs did not differ significantly from certified values at a 95% confidence level, and recoveries between 85% and 97% for MeHgþ, based on spikes, were achieved. The detection limits (LODs) obtained were 0.001 mg Hg/kg for total mercury, 0.0003 mg Hg/kg for MeHgþ and 0.0004 mg Hg/kg for iHg. The quantification limits (LOQs) established were 0.003 mg Hg/kg for total mercury, 0.0010 mg Hg/kg for MeHgþ and 0.0012 mg Hg/kg for iHg. Precision for each mercury species was established, being 12% in terms of RSD in all cases. Finally, the developed method was applied to 24 seafood samples from different origins and total mercury contents. The concentrations for Total Hg, MeHg and iHg ranged from 0.07 to 2.33, 0.003-2.23 and 0.006-0.085 mg Hg/kg, respectively. The established analytical method allows to obtain results for mercury speciation in less than 1 one hour including both, sample pretreatment and measuring step.
Resumo:
Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.
Resumo:
This paper describes some aspects of multichannel spectrophotometry, principles of photodiode arrays and their applications in Analytical Chemistry.
Resumo:
The determination of zirconium-hafnium mixtures is one of the most critical problem of the analytical chemistry, on account of the close similarity of their chemical properties. The spectrophotometric determination proposed by Yagodin et al. show not many practical applications due to the significant spectral interference on the 200-220 nm region. In this work we propound the use of a multivariate calibration method called partial least squares ( PLS ) for colorimetric determination of these mixtures. By using PLS and 16 calibration mixtures we obtained a model which permits determination of zirconium and hafnium with accuracy of about 1-2% and 10-20%, respectively. Using conventional univariate calibration the inaccuracy of the determination is about 10-25% for zirconium and above 57% for hafnium.
Resumo:
The peroxyoxalate system is still one of the most efficient chemiluminescence reactions and the only one supposed to involve the "Chemically Initiated Electron Exchange Luminescence - CIEEL" mechanism, with proved high efficiency. Besides the academic interest in the elucidation of the mechanism of this complex reaction, the peroxyoxalate system has found a variety of applications in analytical chemistry. This review contains (i) a short introduction to basic concepts in chemiluminescence, (ii) a critical summary of mechanistic studies on the peroxyoxalate reaction, (iii) and some examples of analytical applications. Although there are some recent reviews on chemiluminescence, no specific critical revision on mechanistic and analytical features of the peroxyoxalate system has been published.
Resumo:
This review deals with the general use of the surfactants in Analytical Chemistry. Principal characteristic of the micelle is the improvement in selectivity and/or sensitivity of the analytical determination with emphasis on the catalytic reaction and "cloud point" extraction.
Resumo:
The analysis of water samples containing volatile organic compounds has become an important task in analytical chemistry. Gas chromatography has been widely used for the analysis of volatile organic compounds in water. The headspace analysis shows as a principal characteristic the possibility of determination of the volatile components in drinking water. Benzene, Toluene and Xylene (BTX) are important compounds usually present in drinking water, from contamination by petroleum derivatives. Since they are toxic compounds even when present in low concentration levels, their determination is important in order to define the quality of the water. The sampling technique using headspace, coupled with gas chromatography as the separation method, showed to be suitable for BTX analysis in several samples at the mug/L (ppb) level.
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3(2-)) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.
Resumo:
Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in Brazil, even considering the enormous potential of their applications, and their use in several techniques, such as chromatography (SFC) and supercritical fluid extration (SFE). This article series is intended to discuss the historical evolution, instrumentation features and potential and limitations of the supercritical fluid use in analytical chemistry. A special focus will be centered on chromatography and extration techniques using supercritical fluids.
Resumo:
The aim of this work was to propose two different didactic experiments, which can be used in practical classes of analytical chemistry courses. More flexible experiments related to the theme, giving some options to the instructor are proposed. In this way, the Experiment 1 was divided in two parts. In the first one, the visualization of two distinct phases separation is emphasized: the rich and the poor phases in surfactant. In the second part, the metal pre-concentration (Co as example) is emphasized. The Experiment 2 has three different parts. In the first one, the complex formation is pointed out, in the second one, the pH influence is shown and in the last one, the influence of the complexation time is demonstrated.
Resumo:
This paper is a translation from IUPAC nomenclature document by K. Danzer and L. A. Currie (Pure Appl. Chem., 1998, 70(4), 993-1014). Its goal is to establish an uniform and meaningful approach to terminology (in Portuguese), notation, and formulation for calibation in analytical chemistry. In this first part, general fundamentals of calibration are presented, namely for both relationships of qualitative and quantitative variables (relations between variables characterizing certain types analytes of the measured function on the other hand and between variables characterizing the amount or concentration of the chemical species and the intensities of the measured signals, on the other hand). On this basis, the fundamentals of the common single component calibration (Univariate Calibration) which models the relationship y = f(x) between the signal intensities y and the amounts or concentrations x of the analyte under given conditions are represented. Additional papers will be prepared dealing with extensive relationships between several intensities and analyte contents, namely with multivariate calibrations and with optimization and experimental design.
Resumo:
This work presents an overview of the development of analytical chemistry in Brazil in the last 25 years under the influence of Brazilian Chemical Society (SBQ). It is shown that the common sense that analytical chemistry is still an under-developed area is not true. Data from specialized literature show a significant contribution of Brazilian analytical chemists in high impact periodicals and for several areas there is a good adherence among works carried out in Brazil and abroad according to a comparison of studies presented in the 11th Brazilian Meeting on Analytical Chemistry (Campinas, September, 2001) and the XI European Conference on Analytical Chemistry (Lisboa, September, 2000). According to the opinion of investigators in this area, there are some topics that require a focused attention for proper evolution. However, there is an absolute consensus about the evolution of graduate programs and the need to improve and extend strategies to absorb newcomers in the area. Some suggestions are presented considering possible pathways of analytical chemistry in Brazil.