947 resultados para Bio-inspired optimization techniques
Resumo:
In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.
Resumo:
The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.
Resumo:
Combinatorial optimization problems have been strongly addressed throughout history. Their study involves highly applied problems that must be solved in reasonable times. This doctoral Thesis addresses three Operations Research problems: the first deals with the Traveling Salesman Problem with Pickups and Delivery with Handling cost, which was approached with two metaheuristics based on Iterated Local Search; the results show that the proposed methods are faster and obtain good results respect to the metaheuristics from the literature. The second problem corresponds to the Quadratic Multiple Knapsack Problem, and polynomial formulations and relaxations are presented for new instances of the problem; in addition, a metaheuristic and a matheuristic are proposed that are competitive with state of the art algorithms. Finally, an Open-Pit Mining problem is approached. This problem is solved with a parallel genetic algorithm that allows excavations using truncated cones. Each of these problems was computationally tested with difficult instances from the literature, obtaining good quality results in reasonable computational times, and making significant contributions to the state of the art techniques of Operations Research.
Resumo:
The design optimization of industrial products has always been an essential activity to improve product quality while reducing time-to-market and production costs. Although cost management is very complex and comprises all phases of the product life cycle, the control of geometrical and dimensional variations, known as Dimensional Management (DM), allows compliance with product and process requirements. Hence, the tolerance-cost optimization becomes the main practice to provide an effective application of Design for Tolerancing (DfT) and Design to Cost (DtC) approaches by enabling a connection between product tolerances and associated manufacturing costs. However, despite the growing interest in this topic, a profitable application in the industry of these techniques is hampered by their complexity: the definition of a systematic framework is the key element to improving design optimization, enhancing the concurrent use of Computer-Aided tools and Model-Based Definition (MBD) practices. The present doctorate research aims to define and develop an integrated methodology for product/process design optimization, to better exploit the new capabilities of advanced simulations and tools. By implementing predictive models and multi-disciplinary optimization, a Computer-Aided Integrated framework for tolerance-cost optimization has been proposed to allow the integration of DfT and DtC approaches and their direct application for the design of automotive components. Several case studies have been considered, with the final application of the integrated framework on a high-performance V12 engine assembly, to achieve both functional targets and cost reduction. From a scientific point of view, the proposed methodology provides an improvement for the tolerance-cost optimization of industrial components. The integration of theoretical approaches and Computer-Aided tools allows to analyse the influence of tolerances on both product performance and manufacturing costs. The case studies proved the suitability of the methodology for its application in the industrial field, providing the identification of further areas for improvement and refinement.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system. In the Unibo laboratories, catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture in the reactor. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. The Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend. Then, some zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene. Then, the effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.
Resumo:
Several decision and control tasks involve networks of cyber-physical systems that need to be coordinated and controlled according to a fully-distributed paradigm involving only local communications without any central unit. This thesis focuses on distributed optimization and games over networks from a system theoretical perspective. In the addressed frameworks, we consider agents communicating only with neighbors and running distributed algorithms with optimization-oriented goals. The distinctive feature of this thesis is to interpret these algorithms as dynamical systems and, thus, to resort to powerful system theoretical tools for both their analysis and design. We first address the so-called consensus optimization setup. In this context, we provide an original system theoretical analysis of the well-known Gradient Tracking algorithm in the general case of nonconvex objective functions. Then, inspired by this method, we provide and study a series of extensions to improve the performance and to deal with more challenging settings like, e.g., the derivative-free framework or the online one. Subsequently, we tackle the recently emerged framework named distributed aggregative optimization. For this setup, we develop and analyze novel schemes to handle (i) online instances of the problem, (ii) ``personalized'' optimization frameworks, and (iii) feedback optimization settings. Finally, we adopt a system theoretical approach to address aggregative games over networks both in the presence or absence of linear coupling constraints among the decision variables of the players. In this context, we design and inspect novel fully-distributed algorithms, based on tracking mechanisms, that outperform state-of-the-art methods in finding the Nash equilibrium of the game.
Resumo:
Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.
Resumo:
Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of cardinal importance in clinical monitoring and early disease diagnosis. Biosensors are some worldwide simple and easy-to-use analytical devices as a matter of fact, biosensors using electrochemiluminescence (ECL) are one of the most promising biosensors that needs an ever-increasing sensitivity for improving its clinical effectiveness. The principal aspiration of this project is the investigation of the ECL generation mechanisms for enhancing the ECL intensity and the development of an ultrasensitive sensor, the use of metal-oxide materials (Mox) and the substitution of metal-free dyes. Novel dyes such as BODIPY, TADF are used to improve the sensitivity of ECL techniques thanks to their advantageous and tunable properties, enhancing the signal and also the ECL efficiency. Additionally, the use of Mox could be beneficial for the investigation of two different ECL mechanisms, which occur simultaneously. In this thesis, the investigation of size and distance effects on electrochemical (EC) mechanisms was carried out through the innovative combination of a standard detection system using different size of micromagnetic beads (MBs). That allowed the discovery of an unexpected and highly efficient mechanistic path for electrochemical generation at small distances from the electrode’s surface. The smallest MBs (0.1μm) demostrate an enhancement of electrochemical signal than the bigger one (2.8μm) until 4 times of magnitude. Finally, a novel ultrasensitive sensor, based on the coreactant-luminophores mechanism, was developed for the determination of whole viral genome specific for cardiac HBV and COVID-19 virus. In conclusion, the ECL and the use of EC techniques (such as amperometry), improved the understanding of mechanisms responsible for the ECL/EC signal led to a great enhancement in the signal.
Resumo:
At the intersection of biology, chemistry, and engineering, biosensors are a multidisciplinary innovation that provide a cost-effective alternative to traditional laboratory techniques. Due to their advantages, biosensors are used in medical diagnostics, environmental monitoring, food safety and many other fields. The first part of the thesis is concerned with learning the state of the art of paper-based immunosensors with bioluminescent (BL) and chemiluminescent (CL) detection. The use of biospecific assays combined with CL detection and paper-based technology offers an optimal approach to creating analytical tools for on-site applications and we have focused on the specific areas that need to be considered more in order to ensure a future practical implementation of these methods in routine analyses. The subsequent part of the thesis addresses the development of an autonomous lab-on-chip platform for performing chemiluminescent-based bioassays in space environment, exploiting a CubeSat platform for astrobiological investigations. An origami-inspired microfluidic paper-based analytical device has been developed with the purpose of assesses its performance in space and to evaluate its functionality and the resilience of the (bio)molecules when exposed to a radiation-rich environment. Subsequently, we designed a paper-based assay to detect traces of ovalbumin in food samples, creating a user-friendly immunosensing platform. To this purpose, we developed an origami device that exploits a competitive immunoassay coupled with chemiluminescence detection and magnetic microbeads used to immobilize ovalbumin on paper. Finally, with the aim of exploring the use of biomimetic materials, an hydrogel-based chemiluminescence biosensor for the detection of H2O2 and glucose was developed. A guanosine hydrogel was prepared and loaded with luminol and hemin, miming a DNAzyme activity. Subsequently, the hydrogel was modified by incorporating glucose oxidase enzyme to enable glucose biosensing. The emitted photons were detected using a portable device equipped with a smartphone's CMOS (complementary metal oxide semiconductor) camera for CL emission detection.
Resumo:
In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.
Resumo:
The abundance of visual data and the push for robust AI are driving the need for automated visual sensemaking. Computer Vision (CV) faces growing demand for models that can discern not only what images "represent," but also what they "evoke." This is a demand for tools mimicking human perception at a high semantic level, categorizing images based on concepts like freedom, danger, or safety. However, automating this process is challenging due to entropy, scarcity, subjectivity, and ethical considerations. These challenges not only impact performance but also underscore the critical need for interoperability. This dissertation focuses on abstract concept-based (AC) image classification, guided by three technical principles: situated grounding, performance enhancement, and interpretability. We introduce ART-stract, a novel dataset of cultural images annotated with ACs, serving as the foundation for a series of experiments across four key domains: assessing the effectiveness of the end-to-end DL paradigm, exploring cognitive-inspired semantic intermediaries, incorporating cultural and commonsense aspects, and neuro-symbolic integration of sensory-perceptual data with cognitive-based knowledge. Our results demonstrate that integrating CV approaches with semantic technologies yields methods that surpass the current state of the art in AC image classification, outperforming the end-to-end deep vision paradigm. The results emphasize the role semantic technologies can play in developing both effective and interpretable systems, through the capturing, situating, and reasoning over knowledge related to visual data. Furthermore, this dissertation explores the complex interplay between technical and socio-technical factors. By merging technical expertise with an understanding of human and societal aspects, we advocate for responsible labeling and training practices in visual media. These insights and techniques not only advance efforts in CV and explainable artificial intelligence but also propel us toward an era of AI development that harmonizes technical prowess with deep awareness of its human and societal implications.
Resumo:
In the metal industry, and more specifically in the forging one, scrap material is a crucial issue and reducing it would be an important goal to reach. Not only would this help the companies to be more environmentally friendly and more sustainable, but it also would reduce the use of energy and lower costs. At the same time, the techniques for Industry 4.0 and the advancements in Artificial Intelligence (AI), especially in the field of Deep Reinforcement Learning (DRL), may have an important role in helping to achieve this objective. This document presents the thesis work, a contribution to the SmartForge project, that was performed during a semester abroad at Karlstad University (Sweden). This project aims at solving the aforementioned problem with a business case of the company Bharat Forge Kilsta, located in Karlskoga (Sweden). The thesis work includes the design and later development of an event-driven architecture with microservices, to support the processing of data coming from sensors set up in the company's industrial plant, and eventually the implementation of an algorithm with DRL techniques to control the electrical power to use in it.
Resumo:
Nowadays the idea of injecting world or domain-specific structured knowledge into pre-trained language models (PLMs) is becoming an increasingly popular approach for solving problems such as biases, hallucinations, huge architectural sizes, and explainability lack—critical for real-world natural language processing applications in sensitive fields like bioinformatics. One recent work that has garnered much attention in Neuro-symbolic AI is QA-GNN, an end-to-end model for multiple-choice open-domain question answering (MCOQA) tasks via interpretable text-graph reasoning. Unlike previous publications, QA-GNN mutually informs PLMs and graph neural networks (GNNs) on top of relevant facts retrieved from knowledge graphs (KGs). However, taking a more holistic view, existing PLM+KG contributions mainly consider commonsense benchmarks and ignore or shallowly analyze performances on biomedical datasets. This thesis start from a propose of a deep investigation of QA-GNN for biomedicine, comparing existing or brand-new PLMs, KGs, edge-aware GNNs, preprocessing techniques, and initialization strategies. By combining the insights emerged in DISI's research, we introduce Bio-QA-GNN that include a KG. Working with this part has led to an improvement in state-of-the-art of MCOQA model on biomedical/clinical text, largely outperforming the original one (+3.63\% accuracy on MedQA). Our findings also contribute to a better understanding of the explanation degree allowed by joint text-graph reasoning architectures and their effectiveness on different medical subjects and reasoning types. Codes, models, datasets, and demos to reproduce the results are freely available at: \url{https://github.com/disi-unibo-nlp/bio-qagnn}.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.