991 resultados para Bandwidth frequency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a current error space vector (CESV) based hysteresis controller for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed, for the first time. An open-end winding configuration is used for the induction motor. The proposed controller uses parabolic boundary with generalized vector selection logic for all sectors. The drive scheme is first studied with a space vector based PWM (SVPWM) control and from this the current error space phasor boundary is obtained. This current error space phasor boundary is approximated with four parabolas and then the system is run with space phasor based hysteresis PWM controller by limiting the CESV within the parabolic boundary. The proposed controller has increased modulation range, absence of 5th and 7th order harmonics for the entire modulation range, nearly constant switching frequency, fast dynamic response with smooth transition to the over modulation region and a simple controller implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regionalization approaches are widely used in water resources engineering to identify hydrologically homogeneous groups of watersheds that are referred to as regions. Pooled information from sites (depicting watersheds) in a region forms the basis to estimate quantiles associated with hydrological extreme events at ungauged/sparsely gauged sites in the region. Conventional regionalization approaches can be effective when watersheds (data points) corresponding to different regions can be separated using straight lines or linear planes in the space of watershed related attributes. In this paper, a kernel-based Fuzzy c-means (KFCM) clustering approach is presented for use in situations where such linear separation of regions cannot be accomplished. The approach uses kernel-based functions to map the data points from the attribute space to a higher-dimensional space where they can be separated into regions by linear planes. A procedure to determine optimal number of regions with the KFCM approach is suggested. Further, formulations to estimate flood quantiles at ungauged sites with the approach are developed. Effectiveness of the approach is demonstrated through Monte-Carlo simulation experiments and a case study on watersheds in United States. Comparison of results with those based on conventional Fuzzy c-means clustering, Region-of-influence approach and a prior study indicate that KFCM approach outperforms the other approaches in forming regions that are closer to being statistically homogeneous and in estimating flood quantiles at ungauged sites. Key Points Kernel-based regionalization approach is presented for flood frequency analysis Kernel procedure to estimate flood quantiles at ungauged sites is developed A set of fuzzy regions is delineated in Ohio, USA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the premise that electronic noise dominates mechanical noise in micromachined accelerometers, we present here a method to enhance the sensitivity and resolution at kHz bandwidth using mechanical amplification. This is achieved by means of a Displacement-amplifying Compliant Mechanism (DaCM) that is appended to the usual sensing element comprising a proof-mass and a suspension. Differential comb-drive arrangement is used for capacitive-sensing. The DaCM is designed to match the stiffness of the suspension so that there is substantial net amplification without compromising the bandwidth. A spring-mass-lever model is used to estimate the lumped parameters of the system. A DaCM-aided accelerometer and another without a DaCM-both occupying the same footprint-are compared to show that the former gives enhanced sensitivity: 8.7 nm/g vs. 1.4 nm/g displacement at the sensing-combs under static conditions. A prototype of the DaCM-aided micromachined acclerometer was fabricated using bulk-micromachining. It was tested at the die-level and then packaged on a printed circuit board with an off-the-shelf integrated chip for measuring change in capacitance. Under dynamic conditions, the measured amplification factor at the output of the DaCM was observed to be about 11 times larger than the displacement of the proof-mass and thus validating the concept of enhancing the sensitivity of accelerometers using mechanical amplifiers. The measured first in-plane natural frequency of the fabricated accelerometer was 6.25 kHz. The packaged accelerometer with the DaCM was measured to have 26.7 mV/g sensitivity at 40 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by observations of the mean state of tropical precipitable water (PW), a moist, first baroclinic mode, shallow-water system on an equatorial beta-plane with a background saturation profile that depends on latitude and longitude is studied. In the presence of a latitudinal moisture gradient, linear analysis of the non-rotating problem reveals large-scale, symmetric, eastward and westward propagating unstable modes. The introduction of a zonal moisture gradient breaks the east-west symmetry of the unstable modes. The effects of rotation are then included by numerically solving the resulting eigenvalue problem on an equatorial beta-plane. With a purely meridional moisture gradient, the system supports large-scale, low-frequency, eastward and westward moving neutral modes. Some of the similarities, and some of the discrepancies of these modes with intraseasonal tropical waves are pointed out. Finally, a zonal moisture gradient in the presence of rotation renders some of the aforementioned neutral modes unstable. In particular, according to observations of large-scale, low-frequency tropical variability, it is seen that regions where the background saturation profile increases (decreases) to the east favour eastward (westward) moving moist modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature (300-973K) and frequency (100Hz-10MHz) response of the dielectric and impedance characteristics of 2BaO-0.5Na(2)O-2.5Nb(2)O(5)-4.5B(2)O(3) glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100Hz-10MHz) and temperature (300-600K). The temperature coefficient of dielectric constant was 8 +/- 3ppm/K in the 300-600K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal-glass interface, leading to a high value of effective dielectric constant especially for the samples heat-treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (P-r) increased with the increase in crystallite size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.