968 resultados para Avinesp 1.0


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Identifying plant communities that are resistant to climate change will be critical for developing accurate, wide-scale vegetation change predictions. Most northern plant communities, especially tundra, have shown strong responses to experimental and observed warming. 2. Experimental warming is a key tool for understanding vegetation responses to climate change. We used open-top chambers to passively warm an evergreen-shrub heath by 1.0-1.3 °C for 15 years at Alexandra Fiord, Nunavut, Canada (79 °N). In 1996, 2000 and 2007, we measured height, plant composition and abundance with a point-intercept method. 3. Experimental warming did not strongly affect vascular plant cover, canopy height or species diversity, but it did increase bryophyte cover by 6.3% and decrease lichen cover by 3.5%. Temporal changes in plant cover were more frequent and of greater magnitude than changes due to experimental warming. 4. Synthesis. This evergreen-shrub heath continues to exhibit community-level resistance to long-term experimental warming, in contrast to most Arctic plant communities. Our findings support the view that only substantial climatic changes will alter unproductive ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive continental shelves surrounding the Antarctic continent. However, the polynyas of the Amundsen Sea harbor the highest concentrations of phytoplankton anywhere in Antarctica. Here we present data showing the likely sources of Fe that enable such a productive and long lasting phytoplankton bloom. Circumpolar Deep Water (CDW) flows over the bottom of the shelf into the Pine Island Bay where DFe and TDFe were observed to increase from 0.2 to 0.4 nM DFe and from 0.3-4.0 to 7-14 nM TDFe, respectively. At the southern end of Pine Island Bay, the CDW upwelled under the Pine Island Glacier, bringing nutrients (including Fe) to the surface and melting the base of the glacier. Concentrations of DFe in waters near the Pine Island Glacier and the more westward lying Crosson, Dotson, and Getz Ice Shelves varied between 0.40 and 1.31 nM, depending on the relative magnitude of upwelling, turbulent mixing, and melting. These values represent maximum concentrations since associated ligands (which increase the solubility of Fe in seawater) were saturated with Fe (Thuroczy et al., 2012, doi:10.1016/j.dsr2.2012.03.009). The TDFe concentrations were very high compared to what previously has been measured in the Southern Ocean, varying between 3 and 106 nM. In the Pine Island Polynya, macronutrients and DFe were consumed by the phytoplankton bloom and concentrations were very low. We calculate that atmospheric dust contributed < 1% of the Fe necessary to sustain the phytoplankton bloom, while vertical turbulent eddy diffusion from the sediment, sea ice melt, and upwelling contributed 1.0-3.8%, 0.7-2.9%, and 0.4-1.7%, respectively. The largest source was Fe input from the PIG, which could satisfy the total Fe demand by the phytoplankton bloom by lateral advection of Fe over a range of 150 km from the glacier. The role of TDFe as a phytoplankton nutrient remains unclear, perhaps representing an important indirect Fe source via dissolution and complexation by dissolved organic ligands (Gerringa et al., 2000, doi:10.1016/S0304-4203(99)00092-4; Borer et al., 2005, doi:10.1016/j.marchem.2004.08.006).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two manganese (Mn) nodules were found in upper Miocene sediments in Hole 854C at a depth of 32.12 mbsf (Samples 138-854C-5H-1,0-2 cm, and -6H-1, 2-4 cm). In structure and composition, the lower nodule is similar to the Pleistocene surface nodules associated with radiolarian ooze from the Clarion-Clipperton Nodule Province. The upper nodule resembles those occurring on pelagic clay from the northern margin of that province.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are reflected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm**3, porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm**3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[?g chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 ?M. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short-term 14C-fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stable isotopic data from benthic foraminifera indicate the occurrence of at least three deepwater masses in the late Maastrichtian ocean. Given mean oceanic d18Ow of -1.0 per mil, the temperature of the coolest intermediate-depth waters was 5°-7°C, that of the deepest waters was 10°C, and that of the warmest intermediate waters was 13°-15°C. The cool intermediate-depth water mass probably originated in the high-latitude Southern Ocean. The deepest waters originated at least partly in the northern Atlantic. The source region for the warmest intermediate-depth water mass is unknown. Although much of the late Maastrichtian deep water was probably preconditioned for winter sinking by low- or middle-latitude evaporation, no more than ~11% of late Maastrichtian deep water could have been directly actuated by low-latitude sea surface evaporation. At least in the southern Atlantic and Indian Oceans, heat transport by upwelling of deep water was not the primary cause of mild sea surface and coastal temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 135 backarc basin lavas are characterized by anomalously high Au contents (1.0-11.4 ppb) and strongly fractionated relative platinum group element (PGE) abundances (Pd/Ir ratio, approximately 100). The Rh and Ir contents are very low, ranging from below detection (approximately 0.02 ppb) to 0.08 ppb. The Pd and Pt contents range from <0.3 to 4 ppb. Rh, Pd, and Pt values are consistently and significantly higher in Site 836 and 839 samples relative to those from Sites 834 and 835. Major, trace, and rare earth element (REE) data suggest Sites 836 and 839 have a more pronounced arc signature than Sites 834 and 835. No correlation exists between noble metal abundance and indices of alteration or fractionation (e.g., loss on ignition (LOI), Mg#, and Cr or Ni contents), suggesting that measured values and ratios are primary and reflect characteristics of the mantle source. The evaluation of Leg 135 noble metal data with respect to potential mantle-source components is hindered by the lack of data on magmas derived from such sources. However, analyses of the limited available data for the different magma types suggest that the characteristic enrichment of Leg 135 lavas in Au, relative to Pd and Cu, cannot be derived solely from simple MORB-type or ocean-island-type mantle, or mantle depleted by a previous melt extraction event. The Au-enriched signature of the Lau basin lavas could, however, be produced through the addition of a sedimentary component from the downgoing slab. Separation of Au from the PGE occurs within oceanic hydrothermal systems and gold values of the resultant precipitates are 2-3 orders of magnitude higher than other oceanic crustal components. Even small additions of this component from the downgoing oceanic crust to a supra-subduction zone mantle melt could account for the high mean Au/Pd ratios of the Leg 135 samples (Sites 834 and 835, Au/Pd = 5.04; Sites 836 and 839, Au/Pd = 2.26).