942 resultados para Assumed-strains
Resumo:
Lupinus mariae-josephae (Lmj) es una especie de lupino endémica de una pequeña y específica área de Comunidad Valenciana (Este de España), donde prospera en suelos alcalinoscalcáreos, un hábitat singular para los altramuces, que crecen preferentemente en suelos ácidos o neutros. Esto hace de Lmj una especie de lupino única. Cuando se inició este trabajo, la extensión conocida de este endemismo abarcaba unos 700 kilómetros cuadrados, confinados en la provincia de Valencia. En esta área, Lmj prospera en pequeñas poblaciones aisladas que contienen un número reducido de plantas por lo que se la consideró una especie en peligro de extinción. Todos los esfuerzos, utilizando estrategias clásicas dirigidas a ampliar el área de crecimiento de Lmj y garantizar su conservación, han tenido un éxito limitado. El trabajo que se presenta está dirigido a mejorar el conocimiento de la ecología de Lmj, en particular la interacción simbiótica que establece con bacterias del suelo denominadas rizobios y se centra en la caracterización fenotípica, filogenética y genómica de esos rizobios. También se investiga la posible contribución de la simbiosis en mejorar la conservación de Lmj. Para este fin, se han estudiado diferentes aspectos que se describen a continuación. El primero objetivo se centró en aislar y estudiar de la diversidad genética de las bacterias endosimbióticas de Lmj. . Se realizó un análisis filogenético de genes esenciales que mostró que las cepas de Lmj pertenecen al género Bradyrhizobium y que presentan una gran diversidad con características fenotípicas y simbióticas diferentes de cepas de Bradyrhizobium que nodulan otras especies de lupinos nativos de España (cepas ISLU). Las cepas estudiadas se dividieron en dos grupos (Clado I y Clado II). El Clado I, incluye a las cepas Lmj, definiendo un nuevo linaje, filogenéticamente relacionado con otras especies de Bradyrhizobium, como B. jicamae y B. elkanii. El Clado II contiene cepas ISLU relacionadas con cepas de B. canariense y B. japonicum que establecen simbiosis con lupinos de suelos ácidos. Otro análisis filogenético basado en genes simbióticos, distribuyó las cepas de Lmj en sólo dos grupos diferentes. La singularidad y gran diversidad de estas cepas en una pequeña área geográfica, hacen de este, un atractivo sistema para el estudio de la evolución y adaptación de las bacterias simbióticas a su respectiva planta huésped. Adicionalmente, se estudio la presencia de bacterias capaces de nodular Lmj en suelos básicos de Chiapas, México. Sorprendentemente, estos suelos contienen bacterias capaces establecer interacciones simbióticas eficientes con Lmj en ensayos de invernadero. A continuación se investigó la taxonomía de los endosimbiontes de Lmj analizando la secuencia de cuatro genes esenciales (16S rRNA, recA, glnII y atpD) y el promedio de identidad de nucleótidos de genomas completos de algunas cepas representativas de la diversidad (ANIm). Se identificaron nuevas especies de Bradyrhizobium dentro del Clado I y se definió una de ellas: 'Bradyrhizobium valentinum' sp. nov (cepa tipo LmjM3T = CECT 8364T, LMG 2761T). También se abordó cómo conservar Lmj en su hábitat natural mediante inoculación con alguna de las cepas aisladas. Se demostró la ausencia de bacterias capaces de nodular Lmj en suelos rojos alcalinos o ‘‘terra rossa’’ de la Península Ibérica y Baleares. Dos cepas, altamente eficientes en cuanto a la fijación de nitrógeno, LmjC y LmjM3T, fueron seleccionadas para ser empleadas como inoculantes. Dos experimentos de campo llevados a cabo en años consecutivos en áreas con características edafoclimáticas similares a las que presentan las poblaciones de Lmj, lograron la reproducción exitosa de la planta. Se concluyó que un ciclo reproductivo exitoso de Lmj es absolutamente dependiente de la inoculación con sus simbiontes naturales y que la simbiosis debe ser considerada un factor esencial en estrategias de conservación de leguminosas en peligro. La obtención de varias secuencias genómicas de cepas aisladas de Lmj y de otras cepas de Bradyrhizobium reveló una alta similitud entre los genomas de las cepas del Clado I, y permitió la identificación de cinco posibles nuevas especies. Además, se estudiaron tres agrupaciones de genes relacionados con la simbiosis (nod, nif y fix) definiendo un nuevo linaje para las cepas de Lmj, diferente del symbiovar “genistearum” de B. canariense y B. japonicum. La baja diversidad encontrada en el análisis filogenético de los genes simbióticos contrasta con la gran diversidad asociada a genes esenciales. La presencia de plásmidos en cepas del género Bradyrhizobium ha sido descrita en muy pocas ocasiones, sin embargo el análisis de la secuencia genómica de la cepa ISLU101, aislada de Lupinus angustifolius, reveló la presencia de un origen de replicación extracromosómico homólogo al operón repABC, presente en el plásmido de Bradyrhizobium sp BTAi1. Gracias a esta secuencia se identificaron genes homólogos en 19 de 72 cepas ISLU. Filogenéticamente, las secuencias de repABC se agruparon en un grupo monofilético con las de pBTAi1 y separadas de los rizobios de crecimiento rápido. Finalmente, se identificaron sistemas de secreción de proteínas de tipo III (T3SS) en nueve genomas de cepas de Lmj. Los T3SS pueden inyectar proteínas efectoras al interior de células vegetales. Su presencia en rizobios se ha relacionado con la gama de hospedador que pueden nodular y puede tener un efecto beneficioso, neutro o perjudicial en la simbiosis. Los T3SS de las cepas de Lmj codifican para una proteína efectora similar a NopE, un efector dependiente de T3SS descrito en B. diazoefficiens USDA 110T. La proteína NopE de la cepa LmjC se ha caracterizado bioquímicamente. ABSTRACT Lupinus mariae-josephae (Lmj) is a lupine species endemic of a unique small area in Valencia region (Eastern Spain) where the lupine plants thrive in alkaline-limed soils, which preferentially grow in acid or neutral soils. This is the type of soils native lupines of Spain. When this work was initiated, the extension of the endemic area of Lmj was of about 700 squared kilometers confined to the Valencia province. In this area, Lmj thrives in small, isolated patches containing a reduced number of plants, and points to an endemism that can easily became endangered or extinct. Consequently, the Valencia Community authorities gave a ‘‘microreserve” status for conservation of the species. All efforts, using classical strategies directed to extend the area of Lmj growth and ensure its conservation have been so far unsuccessful. The work presented here is directed to improve our knowledge of Lmj ecology and it is centered in the characterization of the rhizobial symbiosis by phenotypic, phylogenetic and genomic analysis as well as in investigate the potential contribution of the symbiosis to improve its conservation. To this end, five different topics have been studied, and results are briefly described here. Extensive details can be followed en the attached, published articles. The first topic deals with the indigenous rhizobial symbionts of the Lmj endemism, and its genetic diversity was investigated. The Lmj root symbionts belong to the Bradyrhizobium genus, and phylogenetic analysis based on core genes identified a large diversity of Bradyrhizobium strains with phenotypic and symbiotic characteristics different from rhizobia nodulating other Lupinus spp. native of Spain. The strains were split in two clades. Clade II contained strains close to classical B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. Clade I included Lmj strains that define a new lineage, close to other Bradyrhizobium species as B. jicamae and B. elkanii. The phylogenetic analysis based on symbiotic genes identified only two distinct clusters. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host. Additionally, the presence of bacteria able to nodulate Lmj in basic soils from Chiapas, Mexico was investigated. Surprisingly, these soils contain bacteria able to effectively nodulate and fix nitrogen with Lmj plants in greenhouse assays. In the second topic, the taxonomic status of the endosymbiotic bacteria of Lmj from Valencia endemism and Chiapas was investigated. Results from phylogenetic analysis of core genes and Average Nucleotide Identity (ANIm) using draft genomic sequences identified new Bradyrhizobium species within strains of Clade I of Lmj endosymbiotic bacteria. Only one of these potentially new species has been defined, meanwhile the others are under process of characterization. The name ‘Bradyrhizobium valentinum’ sp. nov. was proposed for the defined species (type strain LmjM3T= CECT 8364T, LMG 2761T). The third topic was directed to conservation of endangered Lmj in its natural habitat. The relevant conclusion of this experimentation is that the symbiosis should be considered as a relevant factor in the conservation strategies for endangered legumes. First, we showed absence of bacteria able to nodulate Lmj in all the inspected ‘‘terra rossa’’ or alkaline red soils of the Iberian Peninsula and Balearic Islands. Then, two efficient nitrogen fixing strains with Lmj plants, LmjC and LmjM3T, were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural Lmj populations, and successful reproduction of the plant was achieved. The relevant conclusion from these assays was that the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia The forth topic deep into the analysis of the genomic of Lmj representative strains. To this end, draft genomic sequences of selected Lmj strains and type strains of Bradyrhizobium spp. were assembled. The comparison analysis of the draft genomic sequences of Lmj strains and related Bradyrhizobium species grouped in Clade I, revealed a high genomic homology among them, and allowed the definition of five potentially new species of Lmj nodulating bacteria. Also, based on the available draft genomic sequences, only three clusters of nod, fix and nif genes from Lmj strains were identified and showed to define a new symbiotic lineage, distant from that of B. canariense and B. japonicum bv. genistearum. The low diversity exhibited by the phylogenetic analysis of symbiotic genes contrast with the large diversity of strains as regards the housekeeping genes analyzed. Besides, the genomic analysis of a Lupinus angustifolius strain ISLU101, revealed the presence of an extrachromosomal replication origin homologous to repABC cluster from plasmid present in Bradyrhizobium spp BTAi1. This repABC cluster gene sequence allowed the identification of extrachromosomic replication origin in 19 out of 72 Bradyrhizobium strains from Lupinus spp., a highly significant result since the absence of plasmids in the Bradyrhizobium genus was traditionally assumed. The repABC gene sequences of these strains grouped them in a unique monophyletic group, related to B. sp. BTAi1 plasmid, but differentiated from the repABC gene cluster of plasmids in fast growing rhizobium strains. The last topic was focused on characterization of type III secreted effectors present in Lmj endosymbiotic bacteria. Type III secretion systems (T3SS) are specialized protein export machineries which can deliver effector proteins into plant cells. The presence of T3SS in rhizobia has frequently been related to the symbiotic nodulation host-range and may have a beneficial or detrimental effect on the symbiosis with legumes. In this context, the presence of T3SS in genomes of nine Lmj strains was investigated, and it was shown the presence of clusters encoding NopE type III-secreted protein similar to the NopE1 and NopE2 of B. diazoefficiens USDA 110T. The putative NopE protein of LmjC strain is at present being characterized regarding its structure and function.
Resumo:
Most red wines commercialized in the market use the malolactic fermentationprocess in order to ensure stability from a microbiological point of view. In this secondfermentation, malic acid is converted into L-lactic acid under controlled setups. Howeverthis process is not free from possible collateral effects that on some occasions produceoff-flavors, wine quality loss and human health problems. In warm viticulture regions suchas the south of Spain, the risk of suffering a deviation during the malolactic fermentationprocess increases due to the high must pH. This contributes to produce wines with highvolatile acidity and biogenic amine values. This manuscript develops a new red winemakingmethodology that consists of combining the use of two non-Saccharomyces yeast strains asan alternative to the traditional malolactic fermentation. In this method, malic acid is totallyconsumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilizationobjective, while Lachancea thermotolerans produces lactic acid in order not to reduce andeven increase the acidity of wines produced from low acidity musts. This technique reducesthe risks inherent to the malolactic fermentation process when performed in warm regions.The result is more fruity wines that contain less acetic acid and biogenic amines than thetraditional controls that have undergone the classical malolactic fermentation.
Resumo:
Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.
Resumo:
Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4+ T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β are HIV-1 suppressive factors secreted by CD8+ cells that inhibit NSI viruses. Recently, the CXC chemokine stromal cell-derived factor 1 (SDF-1) was identified as a ligand for CXCR4 and shown to inhibit SI strains. We speculated that SDF-1 might be an effector molecule for CD8+ suppression of SI isolates and assessed several SDF-1 preparations for inhibition of HIV-1LAI-mediated cell–cell fusion, and examined levels of SDF-1 transcripts in CD8+ T cells. SDF-1 fusion inhibitory activity correlated with the N terminus, and the α and β forms of SDF-1 exhibited equivalent fusion blocking activity. SDF-1 preparations having the N terminus described by Bleul et al. (Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. (1996) J. Exp. Med. 184, 1101–1109) readily blocked HIV-1LAI-mediated fusion, whereas forms containing two or three additional N-terminal amino acids lacked this activity despite their ability to bind and/or signal through CXCR4. Though SDF-1 is constitutively expressed in most tissues, CD8 T cells contained extremely low levels of SDF-1 mRNA transcripts (<1 transcript/5,000 cells), and these levels did not correlate with virus suppressive activity. We conclude that suppression of SI strains of HIV-1 by CD8+ T cells is unlikely to involve SDF-1.
Resumo:
Acknowledgments This work was supported by the EU FP7 KBBE 2012–2016 project PharmaSea, grant N° 312184 and from the Italian Cystic Fibrosis Research foundation (Grant FFC#12/2011).
Resumo:
Genes that are characteristic of only certain strains of a bacterial species can be of great biologic interest. Here we describe a PCR-based subtractive hybridization method for efficiently detecting such DNAs and apply it to the gastric pathogen Helicobacter pylori. Eighteen DNAs specific to a monkey-colonizing strain (J166) were obtained by subtractive hybridization against an unrelated strain whose genome has been fully sequenced (26695). Seven J166-specific clones had no DNA sequence match to the 26695 genome, and 11 other clones were mixed, with adjacent patches that did and did not match any sequences in 26695. At the protein level, seven clones had homology to putative DNA restriction-modification enzymes, and two had homology to putative metabolic enzymes. Nine others had no database match with proteins of assigned function. PCR tests of 13 unrelated H. pylori strains by using primers specific for 12 subtracted clones and complementary Southern blot hybridizations indicated that these DNAs are highly polymorphic in the H. pylori population, with each strain yielding a different pattern of gene-specific PCR amplification. The search for polymorphic DNAs, as described here, should help identify previously unknown virulence genes in pathogens and provide new insights into microbial genetic diversity and evolution.
Resumo:
Multilocus-genotyping methods have shown that Escherichia coli O157:H7 is a geographically disseminated clone. However, high-resolution methods such as pulse-field gel electrophoresis demonstrate significant genomic diversity among different isolates. To assess the genetic relationship of human and bovine isolates of E. coli O157:H7 in detail, we have developed an octamer-based genome-scanning methodology, which compares the distance between over-represented, strand-biased octamers that occur in the genome. Comparison of octamer-based genome-scanning products derived from >1 megabase of the genome demonstrated the existence of two distinct lineages of E. coli O157:H7 that are disseminated within the United States. Human and bovine isolates are nonrandomly distributed among the lineages, suggesting that one of these lineages may be less virulent for humans or may not be efficiently transmitted to humans from bovine sources. Restriction fragment length polymorphism analysis with lambdoid phage genomes indicates that phage-mediated events are associated with divergence of the lineages, thereby providing one explanation for the degree of diversity that is observed among E. coli O157:H7 by other molecular-fingerprinting methods.
Resumo:
The Candida albicans genes, CST20 and HST7, were cloned by their ability to suppress the mating defects of Saccharomyces cerevisiae mutants in the ste20 and ste7 genes, which code for elements of the mating mitogen-activated protein (MAP) kinase pathway. These Candida genes are both structural and functional homologs of the cognate Saccharomyces genes. The pattern of suppression in Saccharomyces is related to their presumptive position in the MAP kinase cascade. Null alleles of these genes were constructed in Candida. The Candida homozygous null mutants are defective in hyphal formation on some media, but are still induced to form hyphae by serum, showing that serum induction of hyphae is independent of the MAP kinase cascade. The Candida heterozygotes CST20/cst20 and HST7/hst7 are also defective in hyphal formation. This lack of dominance of the wild-type allele suggests that gene dosage is important in Candida.
Resumo:
The use of fertility drugs has continued to grow since their introduction in the 1960s. Accompanying this increase has been the speculation that repetitive use of these drugs can cause ovarian tumors or cancer. We recently reported that transgenic mice with chronically elevated luteinizing hormone (LH), an analog of which is commonly used in fertility regimens, develop granulosa cell (GC) tumors. In this report we show that LH induction of these tumors is highly dependent on genetic background. In CF-1 mice, chronically elevated LH invariably causes GC tumors by 5 months of age. However, in hybrid mice generated by crossing CF-1 males with C57BL/6, SJL, or CD-1 females, elevated levels of this same hormone cause a completely different phenotype resembling a luteoma of pregnancy. We also show that three genes likely control these alternative hormonal responses. This clinical correlate of elevated LH reveals remarkably distinct, strain-dependent, ovarian phenotypes. In addition, these results support the rare incidence of GC tumors in the human population, and suggest that the ability of certain fertility drugs to cause ovarian tumors may depend on an individual's genetic predisposition.
Resumo:
We have developed a tetracycline-repressible female-specific lethal genetic system in the vinegar fly Drosophila melanogaster. One component of the system is the tetracycline-controlled transactivator gene under the control of the fat body and female-specific transcription enhancer from the yolk protein 1 gene. The other component consists of the proapoptotic gene hid under the control of a tetracycline-responsive element. Males and females of a strain carrying both components are viable on medium supplemented with tetracycline, but only males survive on normal medium. A strain with such properties would be ideal for a sterile-insect release program, which is most effective when only males are released in the field.
Resumo:
We report the construction of two novel Escherichia coli strains (DH1lacdapD and DH1lacP2dapD) that facilitate the antibiotic-free selection and stable maintenance of recombinant plasmids in complex media. They contain the essential chromosomal gene, dapD, under the control of the lac operator/promoter. Unless supplemented with IPTG (which induces expression of dapD) or DAP, these cells lyse. However, when the strains are transformed with a multicopy plasmid containing the lac operator, the operator competitively titrates the LacI repressor and allows expression of dapD from the lac promoter. Thus transformants can be isolated and propagated simply by their ability to grow on any medium by repressor titration selection. No antibiotic resistance genes or other protein expressing sequences are required on the plasmid, and antibiotics are not necessary for plasmid selection, making these strains a valuable tool for therapeutic DNA and recombinant protein production. We describe the construction of these strains and demonstrate plasmid selection and maintenance by repressor titration, using the new pORT plasmid vectors designed to facilitate recombinant DNA exploitation.
Resumo:
Eukaryotic chromosome replication is initiated from numerous origins and its activation is temporally controlled by cell cycle and checkpoint mechanisms. Yeast has been very useful in defining the genetic elements required for initiation of DNA replication, but simple and precise tools to monitor S phase progression are lacking in this model organism. Here we describe a TK+ yeast strain and conditions that allow incorporation of exogenous BrdU into genomic DNA, along with protocols to detect the sites of DNA synthesis in yeast nuclei or on combed DNA molecules. S phase progression is monitored by quantification of BrdU in total yeast DNA or on individual chromosomes. Using these tools we show that yeast chromosomes replicate synchronously and that DNA synthesis occurs at discrete subnuclear foci. Analysis of BrdU signals along single DNA molecules from hydroxyurea-arrested cells reveals that replication forks stall 8–9 kb from origins that are placed 46 kb apart on average. Quantification of total BrdU incorporation suggests that 190 ‘early’ origins have fired in these cells and that late replicating territories might represent up to 40% of the yeast genome. More generally, the methods outlined here will help understand the kinetics of DNA replication in wild-type yeast and refine the phenotypes of several mutants.
Resumo:
An emerging theme in medical microbiology is that extensive variation exists in gene content among strains of many pathogenic bacterial species. However, this topic has not been investigated on a genome scale with strains recovered from patients with well-defined clinical conditions. Staphylococcus aureus is a major human pathogen and also causes economically important infections in cows and sheep. A DNA microarray representing >90% of the S. aureus genome was used to characterize genomic diversity, evolutionary relationships, and virulence gene distribution among 36 strains of divergent clonal lineages, including methicillin-resistant strains and organisms causing toxic shock syndrome. Genetic variation in S. aureus is very extensive, with ≈22% of the genome comprised of dispensable genetic material. Eighteen large regions of difference were identified, and 10 of these regions have genes that encode putative virulence factors or proteins mediating antibiotic resistance. We find that lateral gene transfer has played a fundamental role in the evolution of S. aureus. The mec gene has been horizontally transferred into distinct S. aureus chromosomal backgrounds at least five times, demonstrating that methicillin-resistant strains have evolved multiple independent times, rather than from a single ancestral strain. This finding resolves a long-standing controversy in S. aureus research. The epidemic of toxic shock syndrome that occurred in the 1970s was caused by a change in the host environment, rather than rapid geographic dissemination of a new hypervirulent strain. DNA microarray analysis of large samples of clinically characterized strains provides broad insights into evolution, pathogenesis, and disease emergence.
Resumo:
We have previously described the mutator alleles mutA and mutC, which map at 95 minutes and 42 minutes, respectively, on the Escherichia coli genetic map and which stimulate transversions; the A.T-->T.A and G.C-->T.A substitutions are the most prominent. In this study we show that both mutA and mutC result from changes in the anticodon in one of four copies of the same glycine tRNA, at either the glyV or the glyW locus. This change results in a tRNA that inserts glycine at aspartic acid codons. In view of previous studies of missense suppressor tRNAs, the mistranslation of aspartic acid codons is assumed to occur at approximately 1-2%. We postulate that the mutator tRNA effect is exerted by generating a mutator polymerase and suggest that the epsilon subunit of DNA polymerase, which provides a proofreading function, is the most likely target. The implications of these findings for the contribution of mistranslation to observed spontaneous mutation rates in wild-type strains, as well as other cellular phenomena such as aging, are discussed.