974 resultados para Assimilação de CO2
Resumo:
Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.
Resumo:
Very little is known about how global anthropogenic changes will affect major harmful algal bloom groups. Shifts in the growth and physiology of HAB species like the raphidophyte Heterosigma akashiwo and the dinoflagellate Prorocentrum minimum due to rising CO2 and temperature could alter their relative abundance and environmental impacts in estuaries where both form blooms, such as the Delaware Inland Bays (DIB). We grew semi-continuous cultures of sympatric DIB isolates of these two species under four conditions: (1) 20 degrees C and 375 ppm CO2 (ambient control), (2)20 degrees C and 750 ppm CO2 (high CO2),(3) 24 degrees C and 375 ppm CO2 (high temperature), and (4) 24 degrees C and 750 ppm CO2 (combined). Elevated CO2 alone or in concert with temperature stimulated Heterosigma growth, but had no significant effect on Prorocentrum growth. P-Bmax (the maximum biomass-normalized light-saturated carbon fixation rate) in Heterosigma was increased only by simultaneous CO2 and temperature increases, whereas P-Bmax in Prorocentrum responded significantly to CO2 enrichment, with or without increased temperature. CO2 and temperature affected photosynthetic parameters alpha, Phi(max), E-k, and Delta F/F'(m) in both species. Increased temperature decreased and increased the Chl a content of Heterosigma and M Prorocentrum, respectively. CO2 availability and temperature had pronounced effects on cellular quotas of C and N in Heterosigma, but not in Prorocentrum. Ratios of C:P and N:P increased with elevated carbon dioxide in Heterosigma but not in Prorocentrum. These changes in cellular nutrient quotas and ratios imply that Heterosigma could be more vulnerable to N limitation but less vulnerable to P-limitation than Prorocentrum under future environmental conditions. In general, Heterosigma growth and physiology showed a much greater positive response to elevated CO2 and temperature compared to Prorocentrum, consistent with what is known about their respective carbon acquisition mechanisms. Hence, rising temperature and CO2 either alone or in combination with other limiting factors could significantly alter the relative dominance of these two co-existing HAB species over the next century. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.
Resumo:
利用涡度相关技术对青藏高原高寒灌丛CO2通量进行连续观测,并以2003年7、8月份为例,对高寒灌丛暖季CO2通量变化模式及其主要气候影响因子进行了分析.结果表明,7、8月青藏高原高寒灌丛日平均净生态系统CO2交换(NEE)分别为-7.17,-7.26g/(m2•d);最高日NEE分别为-11.00,-12.09g/(m2•d).暖季高寒灌丛生态系统NEE日变化波动极为明显,8:00~19:00为CO2净吸收阶段,峰值一般出现在12:00左右,最大值为-1.72g/(m2•h)(7月份)、-1.63g/(m2•h)(8月份).19:00~次日8:00为CO2净释放,最大值为0.69g/(m2•h)(7月份)、0.86g/(m2•h)(8月份).在主要气候因子中,光合有效辐射(PAR)与NEE变化呈显著正相关,但PAR达到1000μmol/(m2•s)以后,随着PAR进一步升高,NEE有下降趋势.就温度而言,白昼(7:00~20:00)NEE变化与温度无显著关联,而夜间(21:00~次日6:00)温度与NEE变化呈显著正相关.
Resumo:
选择青藏高原东北隅海北站区的4种高寒草甸土壤进行高分辨率采样,测定土壤有机碳及其^14C信号;应用^14C示踪技术探讨高寒草甸土壤有机碳更新周期和CO2通量.研究得出海北站高寒草甸生态系统土壤有机碳储量在22.12×10^4~30.75×10^4kgC•hm^-2之间,平均为26.86×10^4kgC•hm^2.高寒草甸土壤有机碳的更新周期从表层的45~73a随深度增加到数百年甚至数千年或更长.高寒草甸生态系统土壤呼吸的CO2通量变化于103.24—254.93gC•m^-2•a^-1之间,平均为191.23gC•m^-2•a^-1.土壤有机质分解产生的CO2通量变化于73.3~181gC•m^-2•a^-1之间.矮嵩草草甸土壤30%以上的有机碳贮存在土壤表层(0~10cm)的活动碳库中,土壤有机质更新产生的CO2占整个剖面有机质更新产生的CO2通量的72.8%~81.23%.响应于全球变暖,青藏高原高寒草甸生态系统土壤有机碳的储量、流量、归宿变化等问题有待进一步研究.
Resumo:
调查草毡寒冻雏形土生物量及土壤有机质,利用涡度相关技术观测该区域作用层与大气CO2通量.结果表明:地下90%生物量集中于0~10 cm的表土层,年总净初级生产量约935.0 g/m2;土壤有机质含量在6.401~7.060%之间;净CO2通量呈明显的日变化和季节变化规律;5月中旬到9月底为CO2的净吸收(780 g CO2/m2),其中以7月最高,净吸收量明显高于非生长季的,10月到翌年5月初CO2的净排放量(383 g CO2/m2);全年固定碳高达397 g/m2.
Resumo:
利用涡度相关技术观测了青藏高原两个典型的生态系统即矮嵩草(Kobresia humilis)草甸和金露梅(Potentilla fruticosa)灌丛草甸的CO2通量,并就2003年8月份的数据,分析了生态系统通量变化与环境因子的关系。8月份是这两个生态系统的叶面积指数达到最高也是相对稳定的时期,在此期间矮嵩草草甸和金露梅灌丛草甸净碳吸收量分别达56.2和32.6g C•m^-2,日CO2吸收量最大值分别为12.7μmol•m^-2•s^-1和9.3μmol•m^-2•s^-1,排放量最大值分别为5.1μmol•m^-2•s^-1和5.7μmol•m^-2•s^-1。在相同光合有效光量子通量密度(PPFD)条件下,矮嵩草草甸CO2吸收速度大于金露梅灌丛草甸;在PPFD高于1200μmol•m^-2•s^-1。的条件下,随气温增加,两生态系统的CO2吸收速度都下降,但矮嵩草草甸的下降速度(-0.086)比金露梅灌丛草甸(-0.016)快。土壤水分影响土壤呼吸,并且影响差异因植被类型不同而不同。生态系统日CO2吸收量随昼夜温差增加而增大;较大的昼夜温差导致较高的净CO2交换量;植物反射率与CO2通量之间存在负相关关系。
Resumo:
以金露梅(Potentilla fruticosa)灌丛草甸生态系统为对象,应用静态密闭箱-气相色谱法对高寒灌丛(GG)、丛内草甸(GC)和裸地(GL)的CO2释放进行了初步研究。结果表明:GG、GC和GL CO2的释放速率均呈明显的单峰型日变化进程,最大释放速率出现在15:00~17:00之间,最小值在7:00前后出现,白天释放速率大于夜晚;CO2释放速率具有明显的季节性变化特征,生长期CO2释放速率明显高于枯黄期,且均表现为正排放,8月为CO2释放高峰期,释放速率GG>GC>GL(P<0.01);2003年6月30日至2004年2月28日,高寒灌丛植被-土壤系统CO2释放量为3088.458±287.02g/m^2,丛内草甸植被-土壤系统CO2释放量为2239.685±183.68g/m^2,其中基础土壤呼吸CO2的释放量约为1346.748±176.24g/m^2,分别占GG和GC释放量的43.61%和60.13%;CO2释放速率的日变化主要受地表和5cm地温制约,而季节动态与5cm地温呈显著正相关关系(P<0.01)。
Resumo:
在中国科学院海北高寒草甸生态系统定位站干柴滩地区以金露梅Potentilla fruticosa灌丛草甸生态系统为研究对象,应用静态密闭箱-气相色谱法对高寒灌丛(GG)、丛内草甸(GC)和次生裸地(GL)的CO2释放速率进行了长期观测,并对年释放量作了初步估测.结果表明,GG,GC和GL CO2的释放速率在一年内有明显的季节变化.植物生长季CO2释放量明显高于枯黄期,释放速率GG>GC>GL(P<0.01),且均表现为正排放.不同季节CO2释放存在明显差异,表现为夏季>秋季>春季>冬季.2003年6月30日至2004年6月28日,高寒灌丛植被-土壤系统CO2释放量为4 293.63±955.75 g/m2,丛内草甸植被-土壤系统CO2释放量为3 319.68±806.19 g/m2,裸地CO2的释放量为1 724.14±444.14 g/m2.CO2释放速率的季节变化与土壤5 cm温度呈显著正相关关系(P<0.01).
Resumo:
于2002和2003年冬季运用涡度相关法测定藏北草甸在有积雪和无雪条件下的CO2和水汽通量.结果表明:在同一层次CO2浓度,在有雪时CO2浓度低于无雪时,其中只有20 cm和160 cm层次间差异极显著(P<0.01);在同一层次,前者的水汽浓度极显著地高于后者(P<0.01);积雪时,CO2通量与5 cm土温相关不显著;高寒草甸CO2交换量,随着积雪时间的延长呈线性降低,而高寒灌丛和沼泽则相反;沼泽和草甸在有雪时,CO2通量值极显著高于无雪时(P<0.01),而灌丛在这两个条件下CO2通量值之间差异不显著.
Resumo:
采用涡度相关观测技术系统, 于2003年7月1日~2004年6月30日对青藏高原高寒草甸3种植被类型(矮嵩草草甸、金露梅灌丛草甸和藏嵩草沼泽化草甸)生态系统CO2通量进行观测和分析. 结果表明, 嵩草草甸、灌丛草甸和沼泽化草甸CO2最大吸收率分别为16.78, 10.42和16.57 mmol/m2•s; 最大CO2排放率分别为8.22, 7.73和18.67 mmol/m2•s; 嵩草草甸和灌丛草甸一年从大气中分别吸收CO2 282和53 g/m2, 而沼泽草甸一年向大气排放CO2 478 g/m2. 证明青藏高原嵩草草甸和灌丛草甸比C4草原和一些低海拔草原和森林具有一个较低CO2吸收和排放量潜能, 而沼泽化草甸具有一个较高的排放潜能, 揭示了青藏高原高寒草甸生态系统不同植被类型的碳源/汇的明显差异, 主要是由植物光合能力不同和土壤呼吸差异引起的.
Resumo:
采用涡度相关法对青藏高原高寒灌丛CO2通量进行连续观测的结果表明,青藏高原高寒灌丛CO2通量呈明显的日和月变化特征.就日变化而言,暖季(7月)CO2通量峰值出现在12:00左右(-1.19 g CO2/(m2•h)-1),08:00~19:00时CO2净吸收,而20:00~07:00为CO2净排放; 冷季(1月)CO2通量变化振幅极小,除11:00~17:00时少量的CO2净排放以外(0.11 g CO2/(m2•h)-1左右),其余时段CO2通量接近于零.从月变化来看,6~9月为CO2净吸收阶段,8月CO2净吸收最大,6~9月CO2净吸收的总量达673 g CO2/m2; 1~5月及10~12月为CO2净排放,共排放446 g CO2/m2,4月CO2净排放最大.全年CO2通量核算表明,无放牧条件下青藏高原高寒灌丛是显著的CO2汇,全年CO2净吸收量达227 g CO2/m2.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
采用静态箱-气相色谱法,对高寒矮嵩草草甸植被-土壤系统CO2释放特征研究结果表明:3个处理(FC、FJ、FL)CO2释放速率具有明显的日变化规律,日最大释放速率出现在13:00左右,最小释放速率在4:00前后,且白天的释放速率均大于夜间;CO2释放速率也具有明显的季节变化特征,植物生长期释放速率明显高于枯黄期,且均表现为正排放;在整个观测期间(6月30日~1月28日)CO2平均释放速率依次为FC>FJ>FL,矮嵩草草甸植物-土壤系统CO2释放速率为438.34±264.12mg/(m2•h)(FC),土壤呼吸速率为313.20±189.74 mg/(m2•h)(FJ),土壤微生物呼吸速率为230.34±145.46mg/(m2•h)(FL),植物根系呼吸占土壤呼吸的26.5%.植物、植物根系以及土壤微生物CO2释放速率与土壤5 cm温度呈极显著正相关关系,相关系数分别为0.858、0.628和0.672(P<0.01).整个系统呼吸、土壤呼吸与土壤5 cm温度可拟和为一指数方程,方程为y=168.03e0.10x86x(R2=0.8783)和y=149.69e0.0745x(R2=0.8189).
Resumo:
Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.