947 resultados para Asbestos-cement
Resumo:
PMMA is the most common bone substitute used for vertebroplasty. An increased fracture rate of the adjacent vertebrae has been observed after vertebroplasty. Decreased failure strength has been noted in a laboratory study of augmented functional spine units (FSUs), where the adjacent, non-augmented vertebral body always failed. This may provide evidence that rigid cement augmentation may facilitate the subsequent collapse of the adjacent vertebrae. The purpose of this study was to evaluate whether the decrease in failure strength of augmented FSUs can be avoided using low-modulus PMMA bone cement. In cadaveric FSUs, overall stiffness, failure strength and stiffness of the two vertebral bodies were determined under compression for both the treated and untreated specimens. Augmentation was performed on the caudal vertebrae with either regular or low-modulus PMMA. Endplate and wedge-shaped fractures occurred in the cranial and caudal vertebrae in the ratios endplate:wedge (cranial:caudal): 3:8 (5:6), 4:7 (7:4) and 10:1 (10:1) for control, low-modulus and regular cement group, respectively. The mean failure strength was 3.3 +/- 1 MPa with low-modulus cement, 2.9 +/- 1.2 MPa with regular cement and 3.6 +/- 1.3 MPa for the control group. Differences between the groups were not significant (p = 0.754 and p = 0.375, respectively, for low-modulus cement vs. control and regular cement vs. control). Overall FSU stiffness was not significantly affected by augmentation. Significant differences were observed for the stiffness differences of the cranial to the caudal vertebral body for the regular PMMA group to the other groups (p < 0.003). The individual vertebral stiffness values clearly showed the stiffening effect of the regular cement and the lesser alteration of the stiffness of the augmented vertebrae using the low-modulus PMMA compared to the control group (p = 0.999). In vitro biomechanical study and biomechanical evaluation of the hypothesis state that the failure strength of augmented functional spine units could be better preserved using low-modulus PMMA in comparison to regular PMMA cement.
Resumo:
STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.
Resumo:
Elderly patients frequently suffer from osteoporotic vertebral fractures resulting in the need of vertebroplasty or kyphoplasty. Nevertheless, no data are available about the long-term consequences of cement injection into osteoporotic bone. Therefore, the aim of the present study was to evaluate the long-term tissue reaction on bone cement injected to osteoporotic bone during vertebroplasty. The thoracic spine of an 80-year-old female was explanted 3.5 years after vertebroplasty with polymethylmethacrylate. The treatment had been performed due to painful osteoporotic compression fractures. Individual vertebral bodies were cut in axial or sagittal sections after embedding. The sections were analysed using contact radiography and staining with toluidine blue. Furthermore, selected samples were evaluated with scanning electron microscopy and micro-compted tomography (in-plane resolution 6 microm). Large amounts of newly formed callus surrounding the injected polymethylmethacrylate were detected with all imaging techniques. The callus formation almost completely filled the spaces between the vertebral endplate, the cancellous bone, and the injected polymethylmethacrylate. In trabecular bone microfractures and osteoclast lacuna were bridged or filled with newly formed bone. Nevertheless, the majority of the callus formation was found in the immediate vicinity of the polymethylmethacrylate without any obvious relationship to trabecular fractures. The results indicate for the first time that, contrary to established knowledge, even in osteoporosis the formation of large amounts of new bone is possible.
Resumo:
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
The feasibility of carbon sequestration in cement kiln dust (CKD) was investigated in a series of batch and column experiments conducted under ambient temperature and pressure conditions. The significance of this work is the demonstration that alkaline wastes, such as CKD, are highly reactive with carbon dioxide (CO2). In the presence of water, CKD can sequester greater than 80% of its theoretical capacity for carbon without any amendments or modifications to the waste. Other mineral carbonation technologies for carbon sequestration rely on the use of mined mineral feedstocks as the source of oxides. The mining, pre-processing and reaction conditions needed to create favorable carbonation kinetics all require significant additions of energy to the system. Therefore, their actual net reduction in CO2 is uncertain. Many suitable alkaline wastes are produced at sites that also generate significant quantities of CO2. While independently, the reduction in CO2 emissions from mineral carbonation in CKD is small (~13% of process related emissions), when this technology is applied to similar wastes of other industries, the collective net reduction in emissions may be significant. The technical investigations presented in this dissertation progress from proof of feasibility through examination of the extent of sequestration in core samples taken from an aged CKD waste pile, to more fundamental batch and microscopy studies which analyze the rates and mechanisms controlling mineral carbonation reactions in a variety of fresh CKD types. Finally, the scale of the system was increased to assess the sequestration efficiency under more pilot or field-scale conditions and to clarify the importance of particle-scale processes under more dynamic (flowing gas) conditions. A comprehensive set of material characterization methods, including thermal analysis, Xray diffraction, and X-ray fluorescence, were used to confirm extents of carbonation and to better elucidate those compositional factors controlling the reactions. The results of these studies show that the rate of carbonation in CKD is controlled by the extent of carbonation. With increased degrees of conversion, particle-scale processes such as intraparticle diffusion and CaCO3 micropore precipitation patterns begin to limit the rate and possibly the extent of the reactions. Rates may also be influenced by the nature of the oxides participating in the reaction, slowing when the free or unbound oxides are consumed and reaction conditions shift towards the consumption of less reactive Ca species. While microscale processes and composition affects appear to be important at later times, the overall degrees of carbonation observed in the wastes were significant (> 80%), a majority of which occurs within the first 2 days of reaction. Under the operational conditions applied in this study, the degree of carbonation in CKD achieved in column-scale systems was comparable to those observed under ideal batch conditions. In addition, the similarity in sequestration performance among several different CKD waste types indicates that, aside from available oxide content, no compositional factors significantly hinder the ability of the waste to sequester CO2.
Resumo:
This report details the outcomes of a study designed to investigate the piezoelectric properties of Portland cement paste for its possible applications in structural health monitoring. Specifically, this study provides insights into the effects on piezoelectric properties of hardened cement paste from the application of an electric field during the curing process. As part of the reporting of this study, the state of the art in structural health monitoring is reviewed. In this study it is demonstrated that application of an electric field using a spatially-coarse array of electrodes to cure cement paste was not effective in increasing the magnitude of the piezoelectric coupling, but did increase repeatability of the piezoelectric response of the hardened material.
Resumo:
Due to their relatively high calcium oxide content, industrial mineral oxide wastes are potential candidates for mineral sequestration of carbon dioxide (CO2). Cement kiln dust (CKD), a byproduct of cement manufacturing contains 20-60% CaO making it a possible candidate for CO2 sequestration. In this study, three types of CKD are characterized, before and after carbonation, using environmental scanning electron microscopy and energy dispersive x-ray microanalysis to determine the mineralogical and morphological changes occurring due to carbonation. The reactants, products, and precipitation mechanisms were investigated to enhance understanding of the governing processes and allow better utilization of CKD for CO2 sequestration. The results of multiple independent analyses confirmed the formation of CaCO3 during carbonation. Examinations of the reaction pathways found that CaO and calcium hydroxide (Ca(OH)2) were the major reactants. Three types of CaCO3 precipitation mechanisms were observed: (1) diffusion of CO2 into Ca(OH)2 particles causing precipitation in the pores of the particle and the growth of a CaCO3 ring from the outside inward, (2) precipitation onto existing particles, and (3) precipitation from aqueous solution. The growth of a CaCO3 ring on the outside of a particle may slow further diffusion of CO2 into a particle slowing iv the overall sequestration rate. Additionally, changes caused by carbonation in the solubility of trace metals were studied by mixing pre- and post-carbonated CKD with water and analyzing the solution using inductively coupled plasma mass spectrometry. Decreases in the leaching of chromium, lead, and copper were observed, and is an incentive for use of CKD for CO2 sequestration. Equilibrium modeling using PHREEQC confirmed that CaO and Ca(OH)2 would carbonate readily and form CaCO3.
Resumo:
STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.
Resumo:
This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.
Resumo:
Asbestos-contaminated vermiculite attic insulation (VAI) produced from a mine near Libby, Montana, may be present in millions of homes along with other commercial asbestos-containing materials (ACM). The primary goal of the research described here was to develop and test procedures that would allow for the safe and effective weatherization of low-income homes with asbestos. The presence of asbestos insulation was confirmed by bulk sampling of the suspect asbestos material. The homes were then tested for the presence of asbestos fibers in the living spaces. All 40 homes containing VAI revealed the presence of amphibole asbestos in bulk samples. Asbestos (primarily chrysotile) was confirmed in bulk samples of ACM collected from 18 homes. Amphibole asbestos was detected in the living space of 12 (26%) homes, while chrysotile asbestos was detected in the living space of 45 (98%) homes. These results suggest that asbestos sources in homes can contribute to living space contamination
Resumo:
Karst Kamp, a southwestern Montana recreation resort, is 32 road miles south of Bozeman on the east bank of the Gallatin River in a narrow V-shaped valley flanked on the west by the rugged Madison mountain range and on the east by the equally rough Gallatin range. The asbestos deposit itself lies approximately one-half mile northwest of the ranch on a heavily timbered "Alpine-like" slope nearly 1200 feet above the floor of the valley.
Resumo:
Osteolytic lesions of the spine (metastasis, myeloma) can be treated extremely efficiently by percutaneous cement injection. The treatment should be restricted to osteolytic lesions of the vertebral body, and only if a relevant mechanical deterioration is present. If the pedicles and/or the lamina are involved and if there is compression of the spinal canal, the treatment is no longer appropriate. The surgical technique is similar to the treatment of osteoporotic fractures; however, there is definitely a higher risk for cement leakage and the clinical outcome is not as predictable as in osteoporotic fracture treatment. It is important to realize that cement injection per se has no impact on the tumor itself, but provides stability to the vertebral body. An osteolytic lesion without mechanical compromise does not need a vertebroplasty. Patients with tumorous lesions of the spine should be followed by an interdisciplinary team of spine surgeon, oncologist and radio-oncologist.