982 resultados para Argon-36


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions (epsilon-Nd =38.6 to 310.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. epsilon-Nd values of up to 36.5 for samples 62.9 Ma indicate <=35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/204Pb =18.97 +/- 0.06, 207Pb/204Pb =15.67 +/- 0.02, 208Pb/204Pb =39.19 +/- 0.11. 87Sr/86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ~250 Ma. 40Ar/39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite- smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/39Ar age data, therefore, are insensitive to smectite formation during chemical weathering but date the diagenetic growth of illite, the major K-bearing phase in the dust. Over the past 12 Myr, the dust flux to the north Pacific increased by more than an order of magnitude, documenting a substantial drying of central Asia. This climatic change, however, did not alter the ultimate source of the dust, and neoformational products of chemical weathering always remained subordinate to assemblages reworked by mechanical erosion in dust deposited in eastern Asia and the Pacific Ocean.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Downhole temperature and thermal conductivity measurements in core samples recovered during Legs 127 and 128 in the Japan Sea resulted in five accurate determinations of heat flow through the seafloor and accurate estimates of temperature vs. depth over the drilled sections. The heat flows measured at these sites are in excellent agreement with nearby seafloor measurements. Drilling sampled basaltic rocks that form the acoustic basement in the Yamato and Japan basins and provided biostratigraphic and isotopic estimates of the age of these basins. The preliminary age estimates are compared with predicted heat flow values for two different thermal models of the lithosphere. A heat flow determination from the crest of the Okushiri Ridge yielded an anomalously high heat flow of 156 mW/m**2. This excessive heat flow value may have resulted from frictional heating on an active reverse fault that bounds the eastern side of the Ridge. Accurate estimates of sedimentation rates and temperatures in the sedimentary section combined with models of basin formation provide an opportunity to test thermochemical models of silica diagenesis. The current location of the opal-A/opal CT transition in the sedimentary section is determined primarily by the thermal history of the layer in which the transition is now found. Comparison of the ages and temperatures of the layer where the opal-A/opal-CT is found today is compatible with an activation energy of 14 to 17 kcal/mole.