972 resultados para Aquecimento solar
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored.
Resumo:
Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell(1) (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability(3).
Resumo:
We report a high molar extinction coefficient organic sensitizer for high efficiency dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a similar to 7% cell showing an excellent stability measured under the thermal and light soaking dual stress. This is expected to have an important practical consequence on the production of flexible, low-cost, and lightweight DSC based on plastic matrix.
Resumo:
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached.
Resumo:
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS) 2, with a high molar extinction coefficient of 20.5 x 10(3) M-1 cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global ( AM 1.5G) full sunlight.
Resumo:
Binary melts of S-ethyltetrahydrothiophenium iodide and dicyanoamide (or tricyanomethide) have been employed for dye-sensitized solar cells with high power conversion efficiencies up to 6.9% under the illumination of AM 1.5G full sunlight. We have further shown that the transport of triiodide in ionic liquids with high iodide concentration is viscosity-dependent in terms of a physical diffusion coupled bond exchange mechanism apart from the simple physical diffusion.
Resumo:
We report a high molar extinction coefficient heteroleptic polypyridyl ruthenium sensitizer, featuring an electron-rich 3,4-ethylenedioxythiophene unit in its ancillary ligand. A nanocrystalline titania film stained with this sensitizer shows an improved optical absorption, which is highly desirable for practical dye-sensitized solar cells with a thin photoactive layer, facilitating the efficient charge collection.
Resumo:
We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.
Resumo:
A series of organic D-pi-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies.
Resumo:
We systematically studied the temperature-dependent physicochemical properties, such as density, conductivity, and fluidity, of 1,3-dialkylimidazolium iodides. In combination with the amphiphilic Z907Na sensitizer, we have found that it is important to use low-viscosity iodide melts with small cations to achieve high-efficiency dye-sensitized solar cells. By employing high-fluidity eutectic-based melts the device efficiencies considerably increased compared to those for cells with the corresponding state of the art ionic liquid electrolytes.
Resumo:
A new metal-free organic sensitizer (see figure) for high-performance and applicable dye-sensitized solar cells is presented. In combination with a solvent-free ionic liquid electrolyte, a similar to 7% cell made with this sensitizer shows all excellent stability measured under thermal and light-soaking dual stress. For the first time a 4.8% efficiency is reached for all-solid-state dye-sensitized solar cells based oil all organic dye.
Resumo:
We employed organic heterojunction films as all-organic connecting units to fabricate tandem organic photovoltaic cells by continuous deposition. The all-organic connecting units with a better transparence and a lower sublimation temperature became an effective recombination center for electrons and holes photogenerated in front cell and back cell, respectively. Tunnel mechanism was proposed to explain the combination of photogenerated carrier.
Resumo:
PCBM (a C-60 derivative) is so far the most successful electron acceptor for bulk-heterojunction polymer photovoltaic (PV) cells. Here we present a novel method epitaxy-assisted creation of PCBM nanocrystals and their homogeneous distribution in the matrix using freshly cleaved mica sheet as the substrate. The highly matched epitaxy relationship between the unit cell of PCBM crystal and crystallographic (001) surface of mica induces abundant PCBM nuclei, which subsequently develop into nanoscale crystals with homogeneous dispersion in the composite film.
Resumo:
Three low bandgap conjugated polymers, i.e., PDTPBT-C8, PDTPBT-C6 and PDTPBT-C5, which consist of alternating N-alkyl dithieno[3,2-b: 2',3'-d] pyrrole and 2,1,3-benzothiadiazole units and carry 1-octylnonyl, 1-hexylheptyl and 1-pentylhexyl as side chains, respectively, were synthesized. These polymers show strong absorption in the wavelength range of 600-900 nm with enhanced absorption coefficient as the length of alkyl chain decreases. The film morphology of the polymers and 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C-61 (PCBM) blends is also dependent on the alkyl chain length. As the length decreases, the film becomes more uniform and the domian size decreases from 400-900 nm for PDTPBT-C8 to similar to 50 nm for PDTPBT-C5.
Resumo:
A new cyclic guanidinium ionic liquid OGI (1,3-dimethyl-2-N ''-methyl-N ''-octylimidazoguanidinium iodide) has been used as a quasi-solid-state electrolyte for dye-sensitized solar cells (DSCs), and 6.38% conversion efficiency was achieved at AM 1.5 simulated sunlight (9.81 mW cm(-2)). Further gelation with SiO2 nanoparticles afforded the solid-state electrolyte, which presented overall conversion efficiency of 5.85%. The diffusion properties of these OGI-based electrolytes were investigated. In the meantime, the optimal structure and ion-pairing interaction in OGI have been proposed by density functional theoretical calculation (DFT) at the B3LYP/6-21G(d,p) level.