924 resultados para Aquatic plants management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in polytunnels were conducted to investigate the effects of ultraviolet (UV)-blocking films on naturally occurring insect pests and their arthropod natural enemies on a cucumber crop. Within tunnels clad with Antibotrytis (blocks light < 400 nm) and UVI/EVA (UV transmitting), 5.8 and 23.4 times more aphids, respectively, were recorded on traps compared with those on traps within tunnels clad with XL 385 (blocks light < 385 nm). When all plants within the UVI/EVA tunnels had become heavily infested with aphids, half of the plants in XL 385 tunnels were uninfested. More Coleoptera and thrips (approximately two times) were recorded under the UVI/EVA film than under the UV-blocking films, but for other arthropod pests (e. g. whitefly, leafhoppers), clear conclusions could not be drawn as low numbers were recorded. Substantial numbers of chalcid parasitoids and syrphids were found under the UV-blocking films, but further research is needed to evaluate fully the effect of such films on biological control of aphids. Higher syrphid numbers and more aphid mummies were recorded under the UVI/EVA film, probably because of the higher numbers of aphids present in tunnels clad with this film. The potential that UV-blocking films have as an effective component of commercial Integrated Pest Management (IPM) systems, for protected horticultural crops, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O-3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O-3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O-3 concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Declines in area and quality of species-rich mesotrophic and calcareous grasslands have occurred all across Europe.While the European Union has promoted schemes to restore these grasslands, the emphasis for management has remained largely focused on plants. Here we focus on restoration of the phytophagous beetles of these grasslands. Although local management, particularly that which promotes the establishment of host plants, is key to restoration success, dispersal limitation is also likely to be an important limiting factor during the restoration of phytophagous beetle assemblages. 2. Using a 3-year multi-site experiment, we investigated how restoration success of phytophagous beetles was affected by hay-spreading management (intended to introduce target plant species), success in restoration of the plant communities and the landscape context within which restoration was attempted. 3. Restoration success of the plants was greatest where green hay spreading had been used to introduce seeds into restoration sites. Beetle restoration success increased over time, although hayspreading had no direct effect. However, restoration success of the beetles was positively correlated with restoration success of the plants. 4. Overall restoration success of the phytophagous beetles was positively correlated with the proportion of species-rich grassland in the landscape, as was the restoration success of the polyphagous beetles. Restoration success for beetles capable of flight and those showing oligophagous host plant specialism were also positively correlated with connectivity to species-rich grasslands. There was no indication that beetles not capable of flight showed greater dependence on landscape scale factors than flying species. 5. Synthesis and applications. Increasing the similarity of the plant community at restoration sites to target species-rich grasslands will promote restoration success for the phytophagous beetles. However, landscape context is also important, with restoration being approximately twice as successful in those landscapes containing high as opposed to low proportions of species-rich grassland. By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, as well as by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading disease, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pinheiros River (Brazil) plays a pivotal role in supplying water to Billings Reservoir, which presents multiple uses (human drinking, energy generation, irrigation, navigation, fishing and leisure) An intense monitoring program was performed during the years 2007 and 2008 to find out whether on site flotation is a feasible solution or not for improving the water quality of this urban river, attenuating the pollutants load caused by the water pumping to the reservoir (approximately 10 m(3)s(-1)) The monitoring of 18 variables (13,429 laboratorial analysis during the period of 490 days), suggested that despite the convenience of the on site approach for water treatment, especially for rivers located in fully urbanized areas, the flotation system is not enough itself to recover Pinheiros River water quality, given the several constraints that apply Total phosphorus removal was high in percentage terms (about 90%), although the remaining concentrations were not so low (mean of 0 05 mg L(-1)) The removal efficiency of some variables was insufficient, leading to high final mean concentrations of metals [e g aluminium (0 29 mg L(-1)), chromium (0 02 mg L(-1)) and iron (1 1 mg L(-1))] as well as nitrogen-ammonia (25 8 mg L(-1)) and total suspended solids (18 mg L(-1)) in the treated water

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic macrophytes Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes were chosen to investigate the Cr(VI) reduced by root-based biosorption in a chromium uptake experiment, using a high-resolution XRF technique. These plants were grown in hydroponics medium supplied with non-toxic Cr concentrations during a 27-day metal uptake experiment. The high-resolution Cr-K beta fluorescence spectra for dried root tissues and Cr reference material (100% Cr, Cr(2)O(3), and CrO(3)) were measured using an XRF spectrometer. For all species of aquatic plant treated with Cr(VI), the energy of the Cr-K beta(2,5) line was shifted around 8 eV below the same spectral line identified for the Cr(VI) reference, but it was also near to the line identified for the Cr(III) reference. Moreover, there was a lack of the strong Cr-K beta"" line assigned to the Cr(VI) reference material within the Cr(VI)-treated plant spectra, suggesting the reduction of Cr(VI) for other less toxic oxidation states of Cr. As all Cr-K beta spectra of root tissue species were compared, the peak energies and lineshape patterns of the Cr-K beta(2,5) line are coincident for the same aquatic plant species, when they were treated with Cr(III) and Cr(VI). Based on the experimental evidence, the Cr(VI) reduction process has happened during metal biosorption by these plants. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr(6+) mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 1 mg(-1) d(-1). The Cr3+ removal efficiency was about 90%, 50%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively.