933 resultados para Antigens, viral
Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA
Resumo:
Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.
Resumo:
Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.
Resumo:
The interaction of bovine viral diarrhea virus (BVD virus) with its host has several unique features, most notably the capacity to infect its host either transiently or persistently. The transient infection stimulates an antiviral immune reaction similar to that seen in other transient viral infections. In contrast, being associated with immunotolerance specific for the infecting BVD viral strain, the persistent infection differs fundamentally from other persistent infections like those caused by lentiviruses. Whereas the latter are characterized by complex viral evasion of the host's adaptive immune response by mechanisms such as antigenic drift and interference with presentation of T cell epitopes, BVD virus avoids the immune response altogether by inducing both humoral and cellular immune tolerance. This is made possible by invasion of the fetus at an early stage of development. In addition to adaptive immunity, BVD virus also manipulates key elements of the host's innate immune response. The non-cytopathic biotype of BVD virus, which is capable of persistently infecting its host, fails to induce type I interferon. In addition, persistently infected cells are resistant to the induction of apoptosis by double-stranded RNA and do not produce interferon when treated with this pathogen-associated molecular pattern (PAMP) that signals viral infection. Moreover, when treated with interferon, cells persistently infected with non-cytopathic BVD virus do not clear the virus. Surprisingly, however, despite this lack of effect on persistent infection, interferon readily induces an antiviral state in these cells, as shown by the protection against infection by unrelated viruses. Overall, BVD virus manipulates the host's interferon defense in a manner that optimises its chances of maintaining the persistent infection as well as decreasing the risks that heterologous viral infections may carry for the host. Thus, since not all potential host cells are infected in animals persistently infected with BVD virus, heterologous viruses replicating in cells uninfected with BVD virus will still trigger production of interferon. Interferon produced by such cells will curtail the replication of heterologous viruses only, be that in cells already infected with BVD virus, or in cells in which the heterologous virus may replicate alone. From an evolutionary viewpoint, this strategy clearly enhances the chances of transmission of BVD virus to new hosts, as it attenuates the negative effects that a global immunosuppression would have on the survival of persistently infected animals.
Resumo:
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that causes persistent infection characterized by the appearance of inflammatory lesions in various organs. To define the sites of persistence, 5 goats were infected with a molecular clone of CAEV, and the viral load was monitored by real-time-PCR and RT-PCR in different sites 8 years after infection. The lymph nodes proved to be an important virus reservoir, with moderate virus replication relative to what is reported for lentiviruses of primates. Mammary gland and milk cells were preferred sites of viral replication. The viral load varied significantly between animals, which points to an important role of the genetic background. We found a clear association between occurrence of histopathological lesions and viral load in specific sites. The mRNA expression analysis of several cytokines did not reveal differences between animals that could explain the considerable individual variations in viral load observed.
Resumo:
Viral hepatitis B and C, structurally two completely different viruses, commonly infect human hepatocytes and cause similar clinical manifestations. Since their discovery, IFN has been a pillar in the treatment. However, because of the different natures of the viruses, therapeutic approaches diverge and new treatment targets are tailored specifically for each virus. Herein, the authors analyse therapeutic approaches for hepatitis B virus (HBV) and hepatitis C virus (HCV) and focus on emerging concepts that are under clinical evaluation. In particular, promising viral inhibitors for HBV and HCV are reviewed and the current status of research for gene therapy for HCV is described. Immune therapy is a fast-moving field with fascinating results which include therapeutic vaccines and toll-like receptor agonists that could improve tomorrow's treatment approaches.
Resumo:
Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.
Resumo:
Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.
Resumo:
Neutralizing antibody (nAb) responses to lymphocytic choriomeningitis virus (LCMV) in mice and immunodeficiency virus and hepatitis C virus in humans are usually weak and slow to develop. This may be the result of structural properties of the surface glycoprotein, a low frequency of B cells with neutralizing specificity, and the necessity of prolonged affinity maturation of specific nAbs. In this study, we show that during LCMV infection, CD27 signaling on CD4+ T cells enhances the secretion of interferon-gamma and tumor necrosis factor-alpha. These inflammatory cytokines lead to the destruction of splenic architecture and immunodeficiency with reduced and delayed virus-specific nAb responses. Consequently, infection with the otherwise persistent LCMV strain Docile was eliminated after CD27 signaling was blocked. Our data provide a novel mechanism by which LCMV avoids nAb responses and suggest that blocking the CD27-CD70 interaction may be an attractive strategy to prevent chronic viral infection.
Resumo:
Imatinib mesylate (imatinib) is a potent inhibitor of defined tyrosine kinases (TKs) and is effective in the treatment of malignancies characterized by constitutive activation of these TKs such as chronic myeloid leukemia and gastrointestinal stromal tumors. TKs also play an important role in T-cell receptor (TCR) signal transduction. Inhibitory as well as stimulating effects of imatinib on T cells and dendritic cells have been described. Here, we analyzed the effects of imatinib treatment on antiviral immune responses in vivo. Primary cytotoxic T-cell (CTL) responses were not impaired in imatinib-treated mice after infection with lymphocytic choriomeningitis virus (LCMV) or after immunization with a tumor cell line expressing LCMV glycoprotein (LCMV-GP). Similarly, neutralizing antibody responses to vesicular stomatitis virus (VSV) were not affected. In contrast, secondary expansion of LCMV-specific memory CTLs was reduced in vitro and in vivo, resulting in impaired protection against reinfection. In addition, imatinib treatment delayed the onset of diabetes in a CTL-induced diabetes model. In summary, imatinib treatment in vivo selectively inhibits the expansion of antigen-experienced memory CTLs without affecting primary T- or B-cell responses. Therefore, imatinib may be efficacious in the suppression of CTL-mediated immunopathology in autoimmune diseases without the risk of acquiring viral infections.
Resumo:
There are controversial data on the meaning of viral induction of breast cancer. The aim of this study was to investigate the presence of human papillomavirus (HPV) DNA in patients with breast carcinoma and the correlation of viral infection with disease outcome. Paraffin-embedded sections from 81 patients with breast cancer were analyzed for HPV DNA by polymerase chain reaction (PCR) using the SPF1/2 primers covering about 40 different low-, intermediate- and high-risk types. We found all samples were negative for HPV DNA. Our analysis could not support a role of HPV in breast carcinoma. Controversial published data indicate a need for further, larger epidemiologic studies.
Resumo:
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.
Resumo:
PURPOSE: Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. METHODS AND MATERIALS: Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). RESULTS: Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). CONCLUSION: E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors.
Resumo:
Numerous cases of acute-onset progressive ataxia, hindlimb paresis and paralysis of unknown aetiology occurred during 1993 to 2003 in cheetahs (Acinonyx jubatus) within the European Endangered Species Programme (eep). This study describes the immunohistochemical investigation of a possible viral aetiology of the "cheetah myelopathy". Antibodies to feline herpesvirus type 1, canine distemper virus, canine parvovirus and Borna disease virus were applied to formalin-fixed and paraffin-embedded brain and spinal cord sections from 25 affected cheetahs aged between three-and-a-half months and 13 years. Using the avidin-biotin complex technique, none of the antibodies gave positive immunosignals in either the brain or the spinal cord tissue.
Resumo:
Detection of persistent infection with BovineViral Diarrhea Virus (BVDV) is essential for both epidemiological and clinical reasons. In addition to the classical virological methods such as virus isolation in tissue culture, ELISA and RT-PCR, immunohistochemistry of skin biopsies has become a useful and reliable tool. Assuming that the presence of BVDV antigen in skin structures is restricted to persistent infection, this method could differentiate from transient infection. In order to answer this question, 6 calves were experimentally infected orally with a non-cytopathic genotype 1 BVDV strain belonging to the subtype k.The calves developed fever, mucopurulent nasal discharge, coughing and leucopenia with relative lymphopenia. Immunohistochemistry of skin biopsies taken daily up to day 13-post infection did not reveal any evidence of BVDV infection. BVDV was, however, isolated from blood samples on cell cultures. Anti-NS3-antibody-ELISA and serum neutralization tests showed that all six calves seroconverted. We conclude that in acute BVDV infections, with genotype 1 and the subtypes found in Switzerland (b, e, h and k) viral antigen is not found in epidermal structures of the skin. In contrast, persistently infected animals test positive for BVD viral antigen by immunohistochemistry of the skin.
Resumo:
Five diagnostic techniques performed on skin biopsies (shoulder region) and/or serum were compared for detection of bovine viral diarrhea virus infection in 224 calves 0-3 months of age, 23 calves older than 3 months but younger than 7 months, and 11 cattle older than 7 months. The diagnostic methods used were immunohistochemistry (IHC), 2 commercial antigen ELISAs, 1 commercial antibody ELISA, and real-time RT-PCR. Results of 249 out of 258 skin and serum samples were identical and correlated within the 3 antigen detection methods and the real-time RT-PCR used. Twenty-six of these 249 samples were BVDV-positive with all antigen detection methods and the real-time RT-PCR. Nine out of 258 samples yielding discordant results were additionally examined by RT-PCR, RT-PCR Reamplification (ReA), and antigen ELISA I on serum and by immunohistochemistry on formalin fixed and paraffin-embedded skin biopsies. Virus isolation and genotyping was performed as well on these discordant samples. In 3 cases, transiently infected animals were identified. Two samples positive by real-time RT-PCR were interpreted as false positive and were ascribed to cross-contamination. The antigen ELISA II failed to detect 2 BVDV-positive calves due to the presence of maternal antibodies; the cause of 2 false-positive cases in this ELISA remained undetermined. Only persistently infected animals were identified in skin samples by IHC or antigen ELISA I. The 3 antigen detection methods and the real-time RT-PCR used in parallel had a high correlation rate (96.5%) and similar sensitivity and specificity values.